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Teaching team

Tutors: 
Gabriele Masina (QCB) 
Andrea Ferigo (Data Science)



Schedule

midterms: 
Part A on Friday, November 6th 11:30-13:30 online 
— for QCB no lab tomorrow... Study time!
Part B (tentatively ~ December, 16th… more on this closer to the date)



Mark registration



Mark registration



Full exams

A typical full exam is composed by (beware weights might change):
 

1. Theoretical part: 2 questions on theoretical aspects of this 
second part (~ 6-7 points);

2. Exercise(s) covering part A (~ 12 points);

3. Exercise(s) covering part B (~12 points)



Course material

Lectures:
Material and information: https://sciproalgo2020.readthedocs.io/en/latest/

Lecture recordings on Moodle: 
https://didatticaonline.unitn.it/dol/enrol/index.php?id=25445

Practicals:

QCB: https://bitbucket.org/erikdassi/sciprog2020

Data science: https://datasciprolab.readthedocs.io/en/latest/

[Thanks to Prof. Alberto Montresor for the material] 

https://sciproalgo2019.readthedocs.io/en/latest/
https://didatticaonline.unitn.it/dol/enrol/index.php?id=25445
https://bitbucket.org/erikdassi/sciprog2020
https://datasciprolab.readthedocs.io/en/latest/


Course material

same moodle page as part A

slides will appear down here

https://sciproalgo2020.readthedocs.io/en/latest/

https://sciproalgo2019.readthedocs.io/en/latest/


Before starting...

Please do not be shy… 

Questions help you/your colleagues to 
understand better and help me to be clearer in 
my presentation

For when you have 3 spare minutes… 
https://theleadertheteacher.wordpress.com/2016/07/18/be-like-a-child-again-ask-more-questions/

Let’s try to make this interactive,
please use the chat!

https://theleadertheteacher.wordpress.com/2016/07/18/be-like-a-child-again-ask-more-questions/


Where we stand...

So far… 
we have learnt a bit of Python and we started doing some little examples of 
data analysis (saw some libraries, etc…)

From now on.. 
we will focus on:

“Solving problems” providing solutions (focusing on correctness),  
possibly in an efficient way (assessing their complexity), organizing 
data in the most suitable/efficient ways (choosing the right data 
structures)



Maximal sum problem

simpler problem

Is the problem clear?

Example:



Maximal sum problem

Is the problem clear?

Example:

simpler problem

4 100 12



Maximal sum problem

Is the problem clear?

Example:

simpler problem

Maximal sum: 18. Any ideas on how to solve this problem?

4 100 12



Solution 1  ~ N^3
Idea:

Given the list A with N elements
 
Consider all pairs (i,j) such that i ≤ j
Get the elements in A[i:j+1]
Compute the sum of all elements in A[i:j+1]
Update max_so_far if sum ≥ max_so_far



List comprehension… ?



List comprehension… ?

How many 
elements? 



List comprehension… ?

How many 
elements?

N*(N+1)/2 ~ N^2 
 

[1, 4, 8, 0, 2, 5, 4, 7, 11, 8, 18, 15, 17, 3, 7, -1, 
1, 4, 3, 6, 10, 7, 17, 14, 16, 4, -4, -2, 1, 0, 3, 7, 
4, 14, 11, 13, -8, -6, -3, -4, -1, 3, 0, 10, 7, 9, 2, 
5, 4, 7, 11, 8, 18, 15, 17, 3, 2, 5, 9, 6, 16, 13, 
15, -1, 2, 6, 3, 13, 10, 12, 3, 7, 4, 14, 11, 13, 4, 
1, 11, 8, 10, -3, 7, 4, 6, 10, 7, 9, -3, -1, 2] 
→ 91 elements! (= 13*14/7)

If A has 100,000 elements → ~ 40 GB RAM!!!

No thanks!



List comprehension… ?

Stores intervals and 
sums!!!

If A has 100,000 elements → ~ 1.3 PB RAM!!!

No thanks!



List comprehension… ?

Important note: 

Time and space 
(memory) are two 
important resources!

[size computed with sys.getsizeof(DATA)]

https://docs.python.org/3/library/sys.html?highlight=sizeof#sys.getsizeof

v1: two variables

v1_listComp: 1 list with 
~ N^2 numbers

v1_listComp_1: 2 lists
-  1 with ~ N^2 

numbers
- 1 with ~ N^2 

sublists of 
numbers

https://docs.python.org/3/library/sys.html?highlight=sizeof#sys.getsizeof


Solution 1  ~ N^3
Idea:

Given the list A with N elements
 
Consider all pairs (i,j) such that i ≤ j
Get the elements in A[i:j+1]
Compute the sum of all elements in A[i:j+1]
Update max_so_far if sum ≥ max_so_far

Why N^3 ?

Intuitively,

We have N*(N+1)/2 intervals and the 
sum of N numbers takes N operations.

So: N * [N*(N+1)/2] ~ N^3 

Can we do any better than this?



Solution 2  ~ N^2
Observation: There is no point in computing the 
same sums over and over again!

 
If S = sum(A[i:j]) →  sum(A[i:j+1]) = S + A[ j+1]

j
ji

i



Solution 2  ~ N^2
Observation: There is no point in computing the 
same sums over and over again!

 
If S = sum(A[i:j]) →  sum(A[i:j+1]) = S + A[ j+1]

Tot        (i, j)
 0, 1, 4, 8, 0, 2, 5, 4, 7, 11, 8, 18, 15, 17, ← (0, x)
 0, 3, 7, -1, 1, 4, 3, 6, 10, 7, 17, 14, 16,    ← (1, x)
 0, 4, -4, -2, 1, 0, 3, 7, 4, 14, 11, 13,         ← (2, x)
 0, -8, -6, -3, -4, -1, 3, 0, 10, 7, 9,
 0, 2, 5, 4, 7, 11, 8, 18, 15, 17, 
 0, 3, 2, 5, 9, 6, 16, 13, 15, 
 0, -1, 2, 6, 3, 13, 10, 12, 
 0, 3, 7, 4, 14, 11, 13, 
 0, 4, 1, 11, 8, 10,
 0, -3, 7, 4, 6, 
 0, 10, 7, 9, 
 0, -3, -1, 
 0, 2                                                       ← (N-1, x)

Maxes (max_so_far)
[0, 1, 4, 8, 8, 8, 8, 8, 8, 11, 11, 18, 18, 18, .., 18]



Solution 2  ~ N^2
Observation: There is no point in computing the 
same sums over and over again!

 
If S = sum(A[i:j]) →  sum(A[i:j+1]) = S + A[ j+1]

Intuitively, we have to consider N*(N+1)/2 ~ N^2 
intervals (for each interval we compute ONE sum and 
the maximum of TWO values: constant time!)

The space required is just a couple of variables: 
constant!

Why N^2 ?



Solution 2  ~ N^2
Tip: use itertools (similar to np.cumsum() )

 
Accumulate of itertools is done in C so it 
is faster

https://docs.python.org/3/library/itertools.html



Solution 2  ~ N^2
Tip: use itertools (similar to np.cumsum() )

 
Accumulate of itertools is done in C so it 
is faster

Similar as before but max computed on the 
accumulated sum (accumulate “hides” a for loop)

Can we do any better than this?

N intervals,  sum of N elements each time: ~ 
N^2 operations

IMPORTANT NOTE:
The improvement comes from implementation 
not algorithm! (code faster by a constant factor)



Solution 3  ~ N log(N)
Divide et impera (Divide and conquer)

Is this correct? Do you see any problem with this? 

Idea:
- Split it in two equally sized sublists

 
- Find maxL as the sum of the maximal 

sublist on the left part

- Find maxR as the sum of the maximal 
sublist on the right part

- Get the solution as max(maxL, maxR)



Solution 3  ~ N log(N)
Divide et impera (Divide and conquer)

Idea:

- Split it in two equally sized sublists
 

- Find maxL as the sum of the 
maximal sublist on the left part

- Find maxR as the sum of the 
maximal sublist on the right part

- maxLL+maxRR is the value of the 
maximal sublist accross the two 
parts



Solution 3  ~ N log(N)
Divide et impera (Divide and conquer)

Idea:

- Split it in two equally sized sublists
 

- Find maxL as the sum of the 
maximal sublist on the left part

- Find maxR as the sum of the 
maximal sublist on the right part

- maxLL+maxRR is the value of the 
maximal sublist accross the two 
parts

Get the point before the mid-point M and go to the 
left until the sum increases. 
Repeat starting from M+1 and going to the right. 
Result is: max(maxL, maxLL+maxRR, maxR)

M    M+1



Solution 3  ~ N log(N)
Divide et impera (Divide and conquer)

Recursive code: calls itself on a smaller sublist.

Runs in N*log(N) … more on this later

i jm



Solution 3  ~ N log(N)
Divide et impera (Divide and conquer)

Recursive code: can use itertools as before to 
accumulate the sum.

Runs in N*log(N) …just a little bit faster, more on 
this later

Tip: use itertools

i jm



Solution 4  ~ N
Dynamic Programming

Let’s define maxHere[i] as the maximum 
value of each sublist that ends in i.

The maximum value in maxHere is the 
maximal sum.

condition i<0 
needs to fix the first element of 
the list (i.e. when i=0)



Solution 4  ~ N
Dynamic Programming

Let’s define maxHere[i] as the maximum value of 
each sublist that ends in i.

The maximum value in maxHere is the maximal 
sum.



Solution 4  ~ N
Dynamic Programming

1 3 4 -8 2 3 -1 3 4 -3 10 -3 2

0 1 4 8 0 2 5 4 7 11 8 18 15 17

0 1 4 8 8 8 8 8 8 11 11 18 18 18

A:

max_here:

max_so_far:

Goes through A once and computes ONE 
sum and two max of TWO values: 
runs in ~N



Solution 4  ~ N
Dynamic Programming

Stores also the indexes

1 3 4 -8 2 3 -1 3 4 -3 10 -3 2

0 1 4 8 0 2 5 4 7 11 8 18 15 17

0 1 4 8 8 8 8 8 8 11 11 18 18 18

A:

max_here:

max_so_far:

0 0 0 0 0 0 0 0 0 4 4 4 4 4start:

last:

0 0 1 2 2 2 2 2 2 8 8 10 10 10end:

0 0 0 0 4 4 4 4 4 4 4 4 4 4



Running times...



Some definitions…



Some history...

https://en.wikipedia.org/wiki/Rhind_Mathematical_Papyrus

https://en.wikipedia.org/wiki/Rhind_Mathematical_Papyrus


Algorithms: the name...

https://en.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Khwarizmi

https://en.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Khwarizmi


Computational problems: examples



Computational problems: examples

Note: we described a relationship between input and output.  Nothing is said  on how to compute 
the result (that’s the difference between math and computer science :-) ) 



Naive solutions

Computational 
Problem 

First, let’s translate 
the computational 
problem into an 
algorithm to solve it.

Then, make it more 
efficient, if possible!



Naive solutions: the code

7 -1 9 121 -3 4 13



Naive solutions: the code

7 -1 9 121 -3 4 13

This code also compares an element with itself...



Naive solutions: the code

These are direct translations of the computational problems. Can we do better?

1 3 5 11 17 121 4437 -1 9 121 -3 4 13

4



Algorithm evaluation

Note on efficiency: algorithm efficiency has a bigger impact on performance than technical details 
(e.g. using Python vs. C, itertools vs sum etc…)  



Efficiency: time and space

Normally, we focus on time because there is a relationship between TIME and SPACE. Intuitively, 
Using N^2 space will require at least N^2 time to read the input… Normally, TIME > SPACE 

we did this 
to have an 
“informal” idea of 
the performance 
but this is a bad 
idea because the 
time depends on 
very many factors!

A more abstract 
representation is 
needed!



Algorithm evaluation: minimum
How many comparisons do we perform?
Compare each element with ALL the elements 

This is the most 
expensive operation 
(might work on ints, 
strings, files,...)

If len(S) = n:
for x  in S:

for y in S:
x>y
…

→ n*n comparisons

Naive algorithm “has complexity”: n^2

In more details:
Best case: n comparisons (S[0] min)

Worst case: n*n comparisons (S[-1] is min)

Can we do better?Any ideas?



Algorithm evaluation: minimum
How many comparisons do we perform?
Compare every element with the OTHER elements

This is the most 
expensive operation 
(might work on ints, 
strings, files,...)

In more details:
Best case: n-1 comparisons (S[0] min)

Worst case: n*(n-1) comparisons (S[-1] is min)

Can we do better?

If len(S) = n:
for x  in 1,...,n:

for y in 1,...,n:
if x!=j:
        x>y
…

→ n*(n-1) = n^2 - n  comparisons

Naive algorithm “has complexity”: n^2
This algorithm: n^2 - n 

How about this?
Easy, we compare 
integers!



Algorithm evaluation: minimum, a better solution
How many comparisons do we perform?
Accumulate the minimum found so far and compare the others with it

This is the most 
expensive operation 
(might work on ints, 
strings, files,...)

If len(S) = n:
while i= 1,...,n-1

S[i] < min_so_far

→ n-1 comparisons

Naive algorithm “has complexity”: n^2 - n

Better algorithm “has complexity”: n-1
(regardless if S[0] is the min of if S[-1] is)



Algorithm evaluation: lookup
How many comparisons do we perform?

I compare v with first element, then to 
the second etc. when I find it or when I 
checked the whole list I stop.

→ n comparisons

Naive algorithm “has complexity”: n
(in the worst case: v is not there!) 

1 3 5 11 17 121 443

4



Algorithm evaluation: lookup, better solution (?)
How many comparisons do we perform?

The list is sorted. I loop through the list, 
if I find value > v I can stop.

Generally faster, if L is big (i.e. n is big) , 
but worst case (es. 500 below)

→ 2*n comparisons

Naive algorithm “has complexity”: n
“Better” algorithm “has complexity”: 2*n

1 3 5 11 17 121 443

4



Algorithm evaluation: best, worst and average case
What is the most important case?

Best: lookup(L,1) solved in 1 step

Worst: lookup(L,10) solved in 9 steps

Average: lookup(L,6) solved in 4 steps

1 2 5 6 7 8 9

1 2 5 6 7 8

1 2 5 6 7 8 9

9

Not interested. 
We are never 
lucky!!!

Normally, the 
most informative 
case

Sometimes 
interesting



Lookup: more efficient algorithm
The list is sorted…

lookup(L,v)

ex. lookup(L,28) 1 7 12 15 21 27 29 41 57



Lookup: a more efficient algorithm
The list is sorted...

lookup(L,v)

ex. lookup(L,28)

Let’s start considering the 
median value, m.

If L[m] = v. Found it! 

if L[m] > v. Search L[0:m]

if L[m] <v. Search L[m+1:]

1 7 12 15 21 27 29 41 57

m



Lookup: a more efficient algorithm
The list is sorted...

lookup(L,v)

ex. lookup(L,28)

Let’s start considering the 
median value, m.

If L[m] = v. Found it! 

if L[m] > v. Search L[0:m] 21 < 28 → ignore L[0:m]

if L[m] <v. Search L[m+1:]

1 7 12 15 21 27 29 41 57

m



Lookup: a more efficient algorithm
The list is sorted...

lookup(L,v)

ex. lookup(L,28)

Let’s start considering the 
median value, m.

If L[m] = v. Found it! 

if L[m] > v. Search L[0:m] 28 < 29 → ignore L[m+1:]

if L[m] <v. Search L[m+1:]

1 7 12 15 21 27 29 41 57

m



Lookup: a more efficient algorithm
The list is sorted...

lookup(L,v)

ex. lookup(L,28)

Let’s start considering the 
median value, m.

If L[m] = v. Found it! 

if L[m] > v. Search L[0:m] 28 < 29 → ignore L[m+1:]

if L[m] <v. Search L[m+1:]

1 7 12 15 21 27 29 41 57

m



Lookup: a more efficient algorithm
The list is sorted...

lookup(L,v)

ex. lookup(L,28)

Let’s start considering the 
median value, m.

If L[m] = v. Found it! 

if L[m] > v. Search L[0:m] 27 != 28 → NOT FOUND

if L[m] <v. Search L[m+1:]

1 7 12 15 21 27 29 41 57

m



Lookup: the recursive code (binary search) 

when only one element left
start = end = m
at next iteration end < start 

v = 28



Lookup: the recursive code (binary search)

2 comparisons (==, <) at each call

How many total comparisons?

Anyone wants to try?



Lookup: the recursive code (binary search)

2 comparisons (==, <) at each call

How many total comparisons?

At beginning 1024 elements…
then 512…
then 256…
then 128…
then 64…
then 32…
then 16…
then 8…
then 4…
then 2…
then 1

→ log2(1024) +1 iterations

“Complexity” ~ 2 * log2 n



Lookup analysis



Correctness



Correctness

The loop invariant helps us proving that an iterative algorithm is correct:

By induction...

Initialization (base case):
Prove that the condition is true before the first iteration

Conservation (inductive step):
If the condition is true before the iteration of the loop, then prove that it 
remains true at the end (before the next iteration)

Conclusion:
At the end, the invariant must represent the "correctness" of the algorithm



Correctness of min

Invariant: At the beginning of iteration i of the while loop, min_so_far contains the partial 
minimum of the elements in S[0:i].

Base case: 
min_so_far = S[0] IS the 
minimum of elements in S[0:1]

Induction step:
(assuming min_so_far is the 
minimum of S[0:i]) at each 
iteration i, min_so_far is 
updated  IFF S[i] < min_so_far 

min_so_far always contains 
min of elements S[0:i]



Correctness of lookup

Exercise: prove the correctness of lookup_rec

This is a recursive code, we cannot use 
the loop invariant but can still prove the 
correctness by induction.

The induction can be done on the 
number of elements in the list:

n = end - start



Correctness of lookup

Exercise: prove the correctness of lookup_rec. 
By induction on n = end - start

Base case (n = 0)

Inductive hypothesis: given a size n, let us assume that the algorithm is correct 
for all sizes n’ < n

Inductive step: given inductive hypothesis, prove invariant still holds for size n.



Correctness of lookup

Exercise: prove the correctness of lookup_rec. 
By induction on n = end - start

Base case (n = 0): if n == 0, this means that end < start. 
The algorithm returns −1. Correct given that if n == 0, v is not present.

Inductive hypothesis: given a size n, let us assume that the algorithm is correct 
for all sizes n’ < n

Inductive step: given a size n > 0, let m be the median element.

If L[m]==v, then the algorithm returns m, because m is the actual position of v —> 
hence v is in m = start+end//2 that is in L[start:end]

If v < L[m], then if v is present, since S is sorted, it must be located in L[start:m].
By inductive hypothesis, lookup_rec(L, v,start, m-1) will return the correct 
position of v if present, or -1 if not present (since m-1 - start is smaller than 
n).

if v > L[m] is symmetric.


