
Scientific Programming:
Algorithms and Data Structures

Introduction

Luca Bianco - Academic Year 2020-21
luca.bianco@fmach.it
[credits: thanks to Prof. Alberto Montresor]

Computer Science
 Ph.D. at the University of Verona, Italy, with thesis on Simulation of Biological Systems

Research Fellow at Cranfield University - UK
 Three years at Cranfield University working at proteomics projects (GAPP, MRMaid, X-Tracker…)
 Module manager and lecturer in several courses of the MSc in Bioinformatics

Bioinformatician at IASMA – FEM
 Currently bioinformatician in the Computational Biology Group at Istituto Agrario di San Michele all’Adige –
Fondazione Edmund Mach, Trento, Italy

Collaborator uniTN - CiBio
I ran the Scientific Programming Lab for QCB for the last couple of years and this course last year

About me

Organization

5

Topics

Learning outcomes

Teaching team

Tutors:
Gabriele Masina (QCB)
Andrea Ferigo (Data Science)

Schedule

midterms:
Part A on Friday, November 6th 11:30-13:30 online
— for QCB no lab tomorrow... Study time!
Part B (tentatively ~ December, 16th… more on this closer to the date)

Mark registration

Mark registration

Full exams

A typical full exam is composed by (beware weights might change):

1. Theoretical part: 2 questions on theoretical aspects of this
second part (~ 6-7 points);

2. Exercise(s) covering part A (~ 12 points);

3. Exercise(s) covering part B (~12 points)

Course material

Lectures:
Material and information: https://sciproalgo2020.readthedocs.io/en/latest/

Lecture recordings on Moodle:
https://didatticaonline.unitn.it/dol/enrol/index.php?id=25445

Practicals:

QCB: https://bitbucket.org/erikdassi/sciprog2020

Data science: https://datasciprolab.readthedocs.io/en/latest/

[Thanks to Prof. Alberto Montresor for the material]

https://sciproalgo2019.readthedocs.io/en/latest/
https://didatticaonline.unitn.it/dol/enrol/index.php?id=25445
https://bitbucket.org/erikdassi/sciprog2020
https://datasciprolab.readthedocs.io/en/latest/

Course material

same moodle page as part A

slides will appear down here

https://sciproalgo2020.readthedocs.io/en/latest/

https://sciproalgo2019.readthedocs.io/en/latest/

Before starting...

Please do not be shy…

Questions help you/your colleagues to
understand better and help me to be clearer in
my presentation

For when you have 3 spare minutes…
https://theleadertheteacher.wordpress.com/2016/07/18/be-like-a-child-again-ask-more-questions/

Let’s try to make this interactive,
please use the chat!

https://theleadertheteacher.wordpress.com/2016/07/18/be-like-a-child-again-ask-more-questions/

Where we stand...

So far…
we have learnt a bit of Python and we started doing some little examples of
data analysis (saw some libraries, etc…)

From now on..
we will focus on:

“Solving problems” providing solutions (focusing on correctness),
possibly in an efficient way (assessing their complexity), organizing
data in the most suitable/efficient ways (choosing the right data
structures)

Maximal sum problem

simpler problem

Is the problem clear?

Example:

Maximal sum problem

Is the problem clear?

Example:

simpler problem

4 100 12

Maximal sum problem

Is the problem clear?

Example:

simpler problem

Maximal sum: 18. Any ideas on how to solve this problem?

4 100 12

Solution 1 ~ N^3
Idea:

Given the list A with N elements

Consider all pairs (i,j) such that i ≤ j
Get the elements in A[i:j+1]
Compute the sum of all elements in A[i:j+1]
Update max_so_far if sum ≥ max_so_far

List comprehension… ?

List comprehension… ?

How many
elements?

List comprehension… ?

How many
elements?

N*(N+1)/2 ~ N^2

[1, 4, 8, 0, 2, 5, 4, 7, 11, 8, 18, 15, 17, 3, 7, -1,
1, 4, 3, 6, 10, 7, 17, 14, 16, 4, -4, -2, 1, 0, 3, 7,
4, 14, 11, 13, -8, -6, -3, -4, -1, 3, 0, 10, 7, 9, 2,
5, 4, 7, 11, 8, 18, 15, 17, 3, 2, 5, 9, 6, 16, 13,
15, -1, 2, 6, 3, 13, 10, 12, 3, 7, 4, 14, 11, 13, 4,
1, 11, 8, 10, -3, 7, 4, 6, 10, 7, 9, -3, -1, 2]
→ 91 elements! (= 13*14/7)

If A has 100,000 elements → ~ 40 GB RAM!!!

No thanks!

List comprehension… ?

Stores intervals and
sums!!!

If A has 100,000 elements → ~ 1.3 PB RAM!!!

No thanks!

List comprehension… ?

Important note:

Time and space
(memory) are two
important resources!

[size computed with sys.getsizeof(DATA)]

https://docs.python.org/3/library/sys.html?highlight=sizeof#sys.getsizeof

v1: two variables

v1_listComp: 1 list with
~ N^2 numbers

v1_listComp_1: 2 lists
- 1 with ~ N^2

numbers
- 1 with ~ N^2

sublists of
numbers

https://docs.python.org/3/library/sys.html?highlight=sizeof#sys.getsizeof

Solution 1 ~ N^3
Idea:

Given the list A with N elements

Consider all pairs (i,j) such that i ≤ j
Get the elements in A[i:j+1]
Compute the sum of all elements in A[i:j+1]
Update max_so_far if sum ≥ max_so_far

Why N^3 ?

Intuitively,

We have N*(N+1)/2 intervals and the
sum of N numbers takes N operations.

So: N * [N*(N+1)/2] ~ N^3

Can we do any better than this?

Solution 2 ~ N^2
Observation: There is no point in computing the
same sums over and over again!

If S = sum(A[i:j]) → sum(A[i:j+1]) = S + A[j+1]

j
ji

i

Solution 2 ~ N^2
Observation: There is no point in computing the
same sums over and over again!

If S = sum(A[i:j]) → sum(A[i:j+1]) = S + A[j+1]

Tot (i, j)
 0, 1, 4, 8, 0, 2, 5, 4, 7, 11, 8, 18, 15, 17, ← (0, x)
 0, 3, 7, -1, 1, 4, 3, 6, 10, 7, 17, 14, 16, ← (1, x)
 0, 4, -4, -2, 1, 0, 3, 7, 4, 14, 11, 13, ← (2, x)
 0, -8, -6, -3, -4, -1, 3, 0, 10, 7, 9,
 0, 2, 5, 4, 7, 11, 8, 18, 15, 17,
 0, 3, 2, 5, 9, 6, 16, 13, 15,
 0, -1, 2, 6, 3, 13, 10, 12,
 0, 3, 7, 4, 14, 11, 13,
 0, 4, 1, 11, 8, 10,
 0, -3, 7, 4, 6,
 0, 10, 7, 9,
 0, -3, -1,
 0, 2 ← (N-1, x)

Maxes (max_so_far)
[0, 1, 4, 8, 8, 8, 8, 8, 8, 11, 11, 18, 18, 18, .., 18]

Solution 2 ~ N^2
Observation: There is no point in computing the
same sums over and over again!

If S = sum(A[i:j]) → sum(A[i:j+1]) = S + A[j+1]

Intuitively, we have to consider N*(N+1)/2 ~ N^2
intervals (for each interval we compute ONE sum and
the maximum of TWO values: constant time!)

The space required is just a couple of variables:
constant!

Why N^2 ?

Solution 2 ~ N^2
Tip: use itertools (similar to np.cumsum())

Accumulate of itertools is done in C so it
is faster

https://docs.python.org/3/library/itertools.html

Solution 2 ~ N^2
Tip: use itertools (similar to np.cumsum())

Accumulate of itertools is done in C so it
is faster

Similar as before but max computed on the
accumulated sum (accumulate “hides” a for loop)

Can we do any better than this?

N intervals, sum of N elements each time: ~
N^2 operations

IMPORTANT NOTE:
The improvement comes from implementation
not algorithm! (code faster by a constant factor)

Solution 3 ~ N log(N)
Divide et impera (Divide and conquer)

Is this correct? Do you see any problem with this?

Idea:
- Split it in two equally sized sublists

- Find maxL as the sum of the maximal

sublist on the left part

- Find maxR as the sum of the maximal
sublist on the right part

- Get the solution as max(maxL, maxR)

Solution 3 ~ N log(N)
Divide et impera (Divide and conquer)

Idea:

- Split it in two equally sized sublists

- Find maxL as the sum of the
maximal sublist on the left part

- Find maxR as the sum of the
maximal sublist on the right part

- maxLL+maxRR is the value of the
maximal sublist accross the two
parts

Solution 3 ~ N log(N)
Divide et impera (Divide and conquer)

Idea:

- Split it in two equally sized sublists

- Find maxL as the sum of the
maximal sublist on the left part

- Find maxR as the sum of the
maximal sublist on the right part

- maxLL+maxRR is the value of the
maximal sublist accross the two
parts

Get the point before the mid-point M and go to the
left until the sum increases.
Repeat starting from M+1 and going to the right.
Result is: max(maxL, maxLL+maxRR, maxR)

M M+1

Solution 3 ~ N log(N)
Divide et impera (Divide and conquer)

Recursive code: calls itself on a smaller sublist.

Runs in N*log(N) … more on this later

i jm

Solution 3 ~ N log(N)
Divide et impera (Divide and conquer)

Recursive code: can use itertools as before to
accumulate the sum.

Runs in N*log(N) …just a little bit faster, more on
this later

Tip: use itertools

i jm

Solution 4 ~ N
Dynamic Programming

Let’s define maxHere[i] as the maximum
value of each sublist that ends in i.

The maximum value in maxHere is the
maximal sum.

condition i<0
needs to fix the first element of
the list (i.e. when i=0)

Solution 4 ~ N
Dynamic Programming

Let’s define maxHere[i] as the maximum value of
each sublist that ends in i.

The maximum value in maxHere is the maximal
sum.

Solution 4 ~ N
Dynamic Programming

1 3 4 -8 2 3 -1 3 4 -3 10 -3 2

0 1 4 8 0 2 5 4 7 11 8 18 15 17

0 1 4 8 8 8 8 8 8 11 11 18 18 18

A:

max_here:

max_so_far:

Goes through A once and computes ONE
sum and two max of TWO values:
runs in ~N

Solution 4 ~ N
Dynamic Programming

Stores also the indexes

1 3 4 -8 2 3 -1 3 4 -3 10 -3 2

0 1 4 8 0 2 5 4 7 11 8 18 15 17

0 1 4 8 8 8 8 8 8 11 11 18 18 18

A:

max_here:

max_so_far:

0 0 0 0 0 0 0 0 0 4 4 4 4 4start:

last:

0 0 1 2 2 2 2 2 2 8 8 10 10 10end:

0 0 0 0 4 4 4 4 4 4 4 4 4 4

Running times...

Some definitions…

Some history...

https://en.wikipedia.org/wiki/Rhind_Mathematical_Papyrus

https://en.wikipedia.org/wiki/Rhind_Mathematical_Papyrus

Algorithms: the name...

https://en.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Khwarizmi

https://en.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Khwarizmi

Computational problems: examples

Computational problems: examples

Note: we described a relationship between input and output. Nothing is said on how to compute
the result (that’s the difference between math and computer science :-))

Naive solutions

Computational
Problem

First, let’s translate
the computational
problem into an
algorithm to solve it.

Then, make it more
efficient, if possible!

Naive solutions: the code

7 -1 9 121 -3 4 13

Naive solutions: the code

7 -1 9 121 -3 4 13

This code also compares an element with itself...

Naive solutions: the code

These are direct translations of the computational problems. Can we do better?

1 3 5 11 17 121 4437 -1 9 121 -3 4 13

4

Algorithm evaluation

Note on efficiency: algorithm efficiency has a bigger impact on performance than technical details
(e.g. using Python vs. C, itertools vs sum etc…)

Efficiency: time and space

Normally, we focus on time because there is a relationship between TIME and SPACE. Intuitively,
Using N^2 space will require at least N^2 time to read the input… Normally, TIME > SPACE

we did this
to have an
“informal” idea of
the performance
but this is a bad
idea because the
time depends on
very many factors!

A more abstract
representation is
needed!

Algorithm evaluation: minimum
How many comparisons do we perform?
Compare each element with ALL the elements

This is the most
expensive operation
(might work on ints,
strings, files,...)

If len(S) = n:
for x in S:

for y in S:
x>y
…

→ n*n comparisons

Naive algorithm “has complexity”: n^2

In more details:
Best case: n comparisons (S[0] min)

Worst case: n*n comparisons (S[-1] is min)

Can we do better?Any ideas?

Algorithm evaluation: minimum
How many comparisons do we perform?
Compare every element with the OTHER elements

This is the most
expensive operation
(might work on ints,
strings, files,...)

In more details:
Best case: n-1 comparisons (S[0] min)

Worst case: n*(n-1) comparisons (S[-1] is min)

Can we do better?

If len(S) = n:
for x in 1,...,n:

for y in 1,...,n:
if x!=j:
 x>y
…

→ n*(n-1) = n^2 - n comparisons

Naive algorithm “has complexity”: n^2
This algorithm: n^2 - n

How about this?
Easy, we compare
integers!

Algorithm evaluation: minimum, a better solution
How many comparisons do we perform?
Accumulate the minimum found so far and compare the others with it

This is the most
expensive operation
(might work on ints,
strings, files,...)

If len(S) = n:
while i= 1,...,n-1

S[i] < min_so_far

→ n-1 comparisons

Naive algorithm “has complexity”: n^2 - n

Better algorithm “has complexity”: n-1
(regardless if S[0] is the min of if S[-1] is)

Algorithm evaluation: lookup
How many comparisons do we perform?

I compare v with first element, then to
the second etc. when I find it or when I
checked the whole list I stop.

→ n comparisons

Naive algorithm “has complexity”: n
(in the worst case: v is not there!)

1 3 5 11 17 121 443

4

Algorithm evaluation: lookup, better solution (?)
How many comparisons do we perform?

The list is sorted. I loop through the list,
if I find value > v I can stop.

Generally faster, if L is big (i.e. n is big) ,
but worst case (es. 500 below)

→ 2*n comparisons

Naive algorithm “has complexity”: n
“Better” algorithm “has complexity”: 2*n

1 3 5 11 17 121 443

4

Algorithm evaluation: best, worst and average case
What is the most important case?

Best: lookup(L,1) solved in 1 step

Worst: lookup(L,10) solved in 9 steps

Average: lookup(L,6) solved in 4 steps

1 2 5 6 7 8 9

1 2 5 6 7 8

1 2 5 6 7 8 9

9

Not interested.
We are never
lucky!!!

Normally, the
most informative
case

Sometimes
interesting

Lookup: more efficient algorithm
The list is sorted…

lookup(L,v)

ex. lookup(L,28) 1 7 12 15 21 27 29 41 57

Lookup: a more efficient algorithm
The list is sorted...

lookup(L,v)

ex. lookup(L,28)

Let’s start considering the
median value, m.

If L[m] = v. Found it!

if L[m] > v. Search L[0:m]

if L[m] <v. Search L[m+1:]

1 7 12 15 21 27 29 41 57

m

Lookup: a more efficient algorithm
The list is sorted...

lookup(L,v)

ex. lookup(L,28)

Let’s start considering the
median value, m.

If L[m] = v. Found it!

if L[m] > v. Search L[0:m] 21 < 28 → ignore L[0:m]

if L[m] <v. Search L[m+1:]

1 7 12 15 21 27 29 41 57

m

Lookup: a more efficient algorithm
The list is sorted...

lookup(L,v)

ex. lookup(L,28)

Let’s start considering the
median value, m.

If L[m] = v. Found it!

if L[m] > v. Search L[0:m] 28 < 29 → ignore L[m+1:]

if L[m] <v. Search L[m+1:]

1 7 12 15 21 27 29 41 57

m

Lookup: a more efficient algorithm
The list is sorted...

lookup(L,v)

ex. lookup(L,28)

Let’s start considering the
median value, m.

If L[m] = v. Found it!

if L[m] > v. Search L[0:m] 28 < 29 → ignore L[m+1:]

if L[m] <v. Search L[m+1:]

1 7 12 15 21 27 29 41 57

m

Lookup: a more efficient algorithm
The list is sorted...

lookup(L,v)

ex. lookup(L,28)

Let’s start considering the
median value, m.

If L[m] = v. Found it!

if L[m] > v. Search L[0:m] 27 != 28 → NOT FOUND

if L[m] <v. Search L[m+1:]

1 7 12 15 21 27 29 41 57

m

Lookup: the recursive code (binary search)

when only one element left
start = end = m
at next iteration end < start

v = 28

Lookup: the recursive code (binary search)

2 comparisons (==, <) at each call

How many total comparisons?

Anyone wants to try?

Lookup: the recursive code (binary search)

2 comparisons (==, <) at each call

How many total comparisons?

At beginning 1024 elements…
then 512…
then 256…
then 128…
then 64…
then 32…
then 16…
then 8…
then 4…
then 2…
then 1

→ log2(1024) +1 iterations

“Complexity” ~ 2 * log2 n

Lookup analysis

Correctness

Correctness

The loop invariant helps us proving that an iterative algorithm is correct:

By induction...

Initialization (base case):
Prove that the condition is true before the first iteration

Conservation (inductive step):
If the condition is true before the iteration of the loop, then prove that it
remains true at the end (before the next iteration)

Conclusion:
At the end, the invariant must represent the "correctness" of the algorithm

Correctness of min

Invariant: At the beginning of iteration i of the while loop, min_so_far contains the partial
minimum of the elements in S[0:i].

Base case:
min_so_far = S[0] IS the
minimum of elements in S[0:1]

Induction step:
(assuming min_so_far is the
minimum of S[0:i]) at each
iteration i, min_so_far is
updated IFF S[i] < min_so_far

min_so_far always contains
min of elements S[0:i]

Correctness of lookup

Exercise: prove the correctness of lookup_rec

This is a recursive code, we cannot use
the loop invariant but can still prove the
correctness by induction.

The induction can be done on the
number of elements in the list:

n = end - start

Correctness of lookup

Exercise: prove the correctness of lookup_rec.
By induction on n = end - start

Base case (n = 0)

Inductive hypothesis: given a size n, let us assume that the algorithm is correct
for all sizes n’ < n

Inductive step: given inductive hypothesis, prove invariant still holds for size n.

Correctness of lookup

Exercise: prove the correctness of lookup_rec.
By induction on n = end - start

Base case (n = 0): if n == 0, this means that end < start.
The algorithm returns −1. Correct given that if n == 0, v is not present.

Inductive hypothesis: given a size n, let us assume that the algorithm is correct
for all sizes n’ < n

Inductive step: given a size n > 0, let m be the median element.

If L[m]==v, then the algorithm returns m, because m is the actual position of v —>
hence v is in m = start+end//2 that is in L[start:end]

If v < L[m], then if v is present, since S is sorted, it must be located in L[start:m].
By inductive hypothesis, lookup_rec(L, v,start, m-1) will return the correct
position of v if present, or -1 if not present (since m-1 - start is smaller than
n).

if v > L[m] is symmetric.

