Scientific Programming:
Algorithms and Data Structures

Introduction

Luca Bianco - Academic Year 2020-21
luca.bianco@fmach.it
[credits: thanks to Prof. Alberto Montresor]

About me

Computer Science
Ph.D. at the University of Verona, Italy, with thesis on Simulation of Biological Systems

Research Fellow at Cranfield University - UK
Three years at Cranfield University working at proteomics projects (GAPP, MRMaid, X-Tracker...)
Module manager and lecturer in several courses of the MSc in Bioinformatics

Bioinformatician at IASMA - FEM

Currently bioinformatician in the Computational Biology Group at Istituto Agrario di San Michele all’Adige —
Fondazione Edmund Mach, Trento, Italy

Collaborator uniTN - CiBio
| ran the Scientific Programming Lab for QCB for the last couple of years and this course last year

Organization

145540 Scientific Programming (12 ECTS, LM QCB)
145685 Scientific Programming (12 ECTS, LM Data Science)

Part A - Programming (22/9-29/10)
Introduction to the Python language and to a collection of
programming libraries for data analysis.

o Mutuated as 145912 Scientific Programming
(LM Math, 6 credits)

Part B - Algorithms (3/11-15/12)

Design and analysis of algorithmic solutions. Presentation of the
most important classes of algorithms and evaluation of their
performance.

Topics

e Introduction e Graphs
e Recursion
o Algorithm analysis
e Asymptotic notations e Visits

e Data structure definition

e Data structures o Algorithms on graphs

o High level overview

e Sequences, maps
(ordered /unordered), sets o Divide-et-impera

e Data structure
implementations in Python

e Algorithmic techniques

e Dynamic programming

o Greedy
@ Trees
o Data structure definition o Backtrack
o Visits e NP class: brief overview

Learning outcomes

At the end of the module, students are expected to:

e evaluate algorithmic choices and select the ones that best suit their
problems;

e analyze the complexity of existing algorithms and algorithms
created on their own;

e design simple algorithmic solutions to solve basic problems.

Teaching team

@ Instructor: Dr. Luca Bianco

o Theory lectures, algorithmic exercises
o luca.bianco [AT| fmach.it

@ Teaching assistant: Dr. Erik Dassi

o Lab sessions on algorithms (QCB)
o erik.dassi [AT| unitn.it

@ Teaching assistant: Dr. David Leoni

o Lab sessions on algorithms (data science)
o david.leoni [AT| unitn.it

Tutors:
Gabriele Masina (QCB)
Andrea Ferigo (Data Science)

Schedule

Week day | Time Room| Description
Monday 14.30-16.30 | online | Lab
Tuesday 15.30-17.30 | online | Lecture

Wednesday | 11.30-13.30 | online | Lab
Thursday 15.30-17.30 | online | Lecture

midterms:
Part A on Friday, November 6th 11:30-13:30 online
— for QCB no lab tomorrow... Study time!
Part B (tentatively ¥ December, 16th... more on this closer to the date)

Mark registration

- 145540,145685 Scientific Programming (12 credits)

e If you pass both midterm exams, you can register the mark

@ The mark is computed as the average of the marks of the
midterm exams, rounded up (e.g. (25+26)/2 = 26)

@ To register your mark you need to enroll to one of the regular
sessions (not the midterm ones).

e If you passed both midterm exams, enroll to a session and do
not show up, we assume you want to register your mark

Mark registration

~— continued

e If you passed both midterm exams, enroll to a session and do
show up, this means that you are not happy with the mark
and want to take the full exam. The result of the full exam
will be your new mark, you cannot backtrack to the midterm
mark.

e If you did not pass both midterm exams, you need to take the
full exam at a regular session.

o After the mark of a regular session have been published, you
have a week to refuse it, after which it will be registered
(silent assent registration).

Full exams

Full exams

January (3h) TBD
February (3h) TBD
June (3h) TBD
July (3h) TBD
September (3h) TBD

A typical full exam is composed by (beware weights might change):

1. Theoretical part: 2 questions on theoretical aspects of this
second part (¥ 6-7 points);

2. Exercise(s) covering part A (* 12 points);

3. Exercise(s) covering part B (V12 points)

Course material

Lectures:
Material and information: hiips://sciproalgo2020.readthedocs.io/en/latest/

Lecture recordings on Moodle:
https://didatticaonline.unitn.it/dol/enrol/index.php?id=25445

Practicals:

QCB: https://bitbucket.org/erikdassi/sciprog2020

Data science: https://datasciprolab.readthedocs.io/en/latest/

[Thanks to Prof. Alberto Montresor for the material]
D

https://sciproalgo2019.readthedocs.io/en/latest/
https://didatticaonline.unitn.it/dol/enrol/index.php?id=25445
https://bitbucket.org/erikdassi/sciprog2020
https://datasciprolab.readthedocs.io/en/latest/

Course material

SEIERUNG Eroo i Ao s Lectures Part B (Algorithms and Data Structures)

General Info Details for the Zoom connection:

Time: Tuesdays and Thursdays 15.30 - 17.30
The contacts to reach me can be found at this page.

Starting date: Tuesday, November 3rd

Timetable and lecture rooms Topic: Algorithms and Data Structures

Lectures will take place on Tuesdays from 15:30 to 17:30 (synchronous online if not otherwise Join Zoom Meeting
communicated) and on Thursdays from 15:30 to 17:30 (synchronous online if not otherwise
communicated). This second part of the Scientific Programming course will tentatively run from hﬂps:llunitn.loom.uslj_

03/11/2020 to 14/12/2020. .
Midterm SR —

The midterm of this part of the course will take place on Wednesday, December 16th, online at 1
11:30-13.30. b] Course Material

Moodle
same moodle page as part A

In the moodle page of the course you can find announcements and videos of the lectures. It can be
found here.

Zoom links

The zoom links for the lectures can be found in the Announcements section of the moodle web
page.

Slides
slides will appear down here

The slides shown during the lectures will gradually appear below:

Teaching assistants

David Leoni (for Data Science)

https://sciproalgo2020.readthedocs.io/en/latest/

Erik Dassi (for QCB)

https://sciproalgo2019.readthedocs.io/en/latest/

Before starting...

Please do not be shy...

Questions help you/your colleagues to
understand better and help me to be clearer in
my presentation

Let’s try to make this interactive,
please use the chat! -

For when you have 3 spare minutes...
https://theleadertheteacher.wordpress.com/2016/07/18/be-like-a-child-again-ask-more-questions/

https://theleadertheteacher.wordpress.com/2016/07/18/be-like-a-child-again-ask-more-questions/

Where we stand...

So far...
we have learnt a bit of Python and we started doing some little examples of
data analysis (saw some libraries, etc...)

From now on..
we will focus on:

“Solving problems” providing solutions (focusing on correctness),
possibly in an efficient way (assessing their complexity), organizing
data in the most suitable/efficient ways (choosing the right data
structures)

Maximal sum problem

e Input: a list A containing n numbers

o Output: a slice (sublist) Afi : j] of maximal sum, i.e. the
slice whose element sum Z‘;C: Alk] is larger or equal than the

sum of any other slice
ﬁ simpler problem

Find the maximal sum, rather than the interval that provides the maximal sum.

Is the problem clear?

Example:

Maximal sum problem

e Input: a list A containing n numbers

o Output: a slice (sublist) Afi : j] of maximal sum, i.e. the
slice whose element sum Zi: Alk] is larger or equal than the

sum of any other slice
ﬁ simpler problem

Find the maximal sum, rather than the interval that provides the maximal sum.

Is the problem clear?

Example: 0 4 10 12

1) 341-8] 2| 3(-1] 3| 4/-3[10|-3]|2

Maximal sum problem

e Input: a list A containing n numbers

o Output: a slice (sublist) Afi : j] of maximal sum, i.e. the
slice whose element sum Zi: Alk] is larger or equal than the

sum of any other slice
ﬁ simpler problem

Find the maximal sum, rather than the interval that provides the maximal sum.

Is the problem clear?

Example: 0 4 10 12

1) 341-8] 2| 3(-1] 3| 4/-3[10|-3]|2

Maximal sum: 18. Any ideas on how to solve this problem?

e Input: a list A containing n numbers

e Output: a slice (sublist) Afi : j] of maximal sum, i.e. the

[N A
Solution 1 ™ N"3
slice whose element sum 37 ;1 Alk] is larger or equal than the

Idea: sum of any other slice
Given the list A with N elements

(1] 3]4]-8[2]3[1[3[4[-3]10]-3]2]

Consider all pairs (i,j) such thati<j

Get the elements in A[ij+1]

Compute the sum of all elements in A[i:j+1]
Update max_so_far if sum > max_so_far

def max sum v1(A):
max so far = 0
N = len(A)
for i in range(N):
for j in range(i,N):
tmp sum = sum (A[i:j+1])
max so far = max(tmp sum, max so far)

return max so far

A=][13,4-8,2, 3,-1,3,4,-3,10,-3,2]
print(A)
print(max sum v1(A))

1, 3, 4, -8, 2, 3, -1, 3, 4, -3, 19, -3, 2]
18

? e Input: a list A containing n numbers

List comprehension... -

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the
slice whose element sum Zi;i Alk] is larger or equal than the
sum of any other slice

[1[3[4[-8[2[8[1[3[4[3[10]-3]2]

def max sum vl listc 1(A):
N = len(A)
sums = [sum(A[i:j+1]) for i in range(N) for j im range(i,N)]

return max(sums)

A=1[13,4,-8,2, 3,-1,3,4,-3,10,-3,2]
print(A)
print(max sum vl listc 1(A))

[11 3: 4' -8: 2: 31 °11 3: 41 -31 191 -31 2]
18

? e Input: a list A containing n numbers

List comprehension... -

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the
slice whose element sum Zi;i Alk] is larger or equal than the
sum of any other slice

[1[3[4[-8[2[8[1[3[4[3[10]-3]2]

def max sum vl listc 1(A):
N = len(A)

sums = [sum(A[i:j+1]) for i in range(N) for j im range(i,N)] ‘ How many
elements?
return max(sums)

A=1[13,4,-8,2, 3,-1,3,4,-3,10,-3,2]
print(A)
print(max sum vl listc 1(A))

[11 3: 4' -8: 2: 31 °11 3: 41 -31 191 -31 2]
18

e Input: a list A containing n numbers

List comprehension... ?

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the
slice whose element sum Zf;i Alk] is larger or equal than the
No thanks! sum of any other slice

[1[3]4]-8[2]3[1[3[4]-3]10]-3]2]

def max sum vl listc 1(A):

N = len(A)
sums = [sum(A[i:j+1]) for i in range(N) for j im range(i,N)] <j:] How many
elements?
return max(sums)
A = [113141'8'2' 3I-ll3l4l-3llol-312] N*(N+1)/2NNA2

print(A)

print(max sum vl listc 1(A))

[E,.28, /4, 58, . 3 21,09 4 <4 8 <3509 [1,4,8,0,2,5,4,7,11,8,18,15,17,3,7, -1,

18 1,4,3,6,10,7,17,14,16,4,-4,-2,1,0, 3, 7,
4,14, 11,13, -8, -6,-3,-4,-1,3,0,10,7,9, 2,
5,4,7,11,8,18,15,17, 3,2, 5, 9, 6, 16, 13,
15,-1,2,6, 3,13,10,12, 3,7, 4,14, 11, 13, 4,
1,11,8,10,-3,7,4,6,10,7,9, -3, -1, 2]
— 91 elements! (= 13*14/7)

If A has 100,000 elements » ¥ 40 GB RAM!!!

. . e Input: a list A containing n numbers
List comprehension... 2 ° P Ao

: o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the
slice whose element sum Zi;i Alk] is larger or equal than the

No thanks! sum of any other slice

def max sum vl listc(A):

N = len(A)

intervals = [A[i:j+1] for i in range(N) for j in range(i,N)]

sums = [sum(vals) for vals in intervals] ‘ Stores intervals and
return max(sums)

sums!!!
A=[1,3,4,-8,2, 3,-1,3,4,-3,10,-3,2]
print(A)
print(max sum vl listc(A))

[1v 31 4: '81 2: 3! '1: 3: 4! '31 10: '31 2]
18

If A has 100,000 elements » ™~ 1.3 PB RAM!!!

e Input: a list A containing n numbers

List comprehension... ?

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the
slice whose element sum Zi;i Alk] is larger or equal than the
sum of any other slice

le7
6- Ji s VI Don’t
" bl —— vl _listComp FORGET]
vI-two variables s | = viiistComp_1 Important note:
v1_listComp: 1 list with °
~ NA2 numbers 24 Time and space
-
Vi_listComp_1: 2 lists 2 3 ‘memory) are two
- 1with ¥ N"2 2 important resources!
numbers o 5
w
- 1with Y N"2 £
sublists of 14
numbers
0 B
0 200 400 600 800 1000
List size

[size computed with sys.getsizeof(DATA)]

https://docs.python.org/3/library/sys.html?highlight=sizeof#sys.getsizeof

https://docs.python.org/3/library/sys.html?highlight=sizeof#sys.getsizeof

. e Input: a list A containing n numbers
Solution 1 ¥ N3

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the
slice whose element sum) 7 ;1 Alk] is larger or equal than the
Idea: sum of any other slice
Given the list A with N elements

(1] 3]4]-8[2]3[1[3[4[-3]10]-3]2]

Consider all pairs (i,j) such thati <j

Get the elements in A[ij+1]

Compute the sum of all elements in Afi:;j+1] Why N*3 ?
Update max_so_far if sum > max_so_far

def max sum v1(A):

max_so far = © Intuitively,

N = len(A)

for i in range(N): We have N*(N+1)/2 intervals and the
for j in range(i,N): sum of N numbers takes N operations.

tmp_sum = sum (A[i:j+1])
max so far = max(tmp sum, max so far)
o Bl - So: N *[N*(N+1)/2] ¥ N3
return max_so far

Can we do any better than this?

e Input: a list A containing n numbers

e Output: a slice (sublist) Afi : j] of maximal sum, i.e. the

[N A
Solution 2 ™ N”2
slice whose element sum 37 ;1 Alk] is larger or equal than the

Observation: There is no point in computing the sum of any other slice
same sums over and over again!
| 1[3[4][8[2]3[-1]3]4]-3]10]-3]2]

If S =sum(A[i;j]) = sum(A[ij+1]) =S + A[j+1] i j
i J

def max sum v2(A):
N = len(A)
max so far = @
for i in range(N):
tot = 0 #ACCUMULATOR!
for j in range(i,N):
tot = tot + A[j]
max so far = max(max so far, tot)
return max so far

A=1[1,3,4,-8,2, 3,-1,3,4,-3,10,-3,2]
print(A)
print(max _sum v2(A))

[lv 3: 41 '81 2: 31 -11 31 41 -31 10: -31 2]
18

e Input: a list A containing n numbers

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the

o N A
Solution 2 ™ N”2
slice whose element sum) 7 ;1 Alk] is larger or equal than the

Observation: There is no point in computing the sum of any other slice
same sums over and over again!

(1] 3]4]-8[2]3[1[3[4[-3]10]-3]2]

If S =sum(A[i;j]) = sum(A[ij+1])) =S + A[jH1]

. Tot (i.J)
aat maxfg'g(ﬁ“\)' 0,1,4,8,0,2, 5 4,7, 11,8, 18, 15,17, — (0, x)
max so far = 0 0,37,-1,1,4,3,6,10,7,17,14,16, <« (1,x)
for i in range(N): 0,4,-4,-2,1,0,3,7,4,14,11,13 —(2,%)
tot = 0 #ACCUMULATOR! 0,-8,-6,-3,-4,-1,3,0,10, 7,9,
for] in range(i,N): 0,2,5,4,7,11, 8, 18, 15, 17,
tot = tot + A[j] 0,3,25,9,6, 16, 13, 15,
max so far = max(max so far, tot) 0,-1,2,6, 3, 13,10, 12,
return max _so far - 0,3,7,4,14, 11,13,
0,4,1, 11,8, 10,
= [1,3,4,-8,2, 3,-1,3,4,-3,10,-3,2] 0,-3,7,4,6,
print(A) 0,10,7,9,
print(max _sum v2(A)) 0,-3, -1,
0,2 «— (N-1, x)
[A,.:3;, 4, =8, 2, 3 =1, 3.4, <8, 30; =3¢ 2]
18 Maxes (max_so_far)
[0,1,4,8,8,8,8,8,8, 11,11, 18, 18, 18, .., 18]

e Input: a list A containing n numbers

e Output: a slice (sublist) Afi : j] of maximal sum, i.e. the

o N A
Solution 2 ™ N”2
slice whose element sum Zj ;1 Alk] is larger or equal than the

Observation: There is no point in computing the sum of any other slice
same sums over and over again!

If S =sum(A[i;j]) = sum(A[ij+1])) =S + A[jH1] Why N*2 ?

def max sum v2(A):
N = len(A)

max so far = 0 Intuitively, we have to consider N*(N+1)/2 ~ NA2

for i in range(N): intervals (for each interval we compute ONE sum and
tot = 0 #ACCUMULATOR! the maximum of TWO values: constant time!)
for j in range(i,N):
tot = tot + A[j] The space required is just a couple of variables:

max so far = max(max so far, tot)

!
return max_so far constant!

A=1[1,3,4,-8,2, 3,-1,3,4,-3,10,-3,2]
print(A)
print(max _sum v2(A))

[lr 31 41 '81 2: 3! -11 31 4r -31 10: -31 2]
18

e Input: a list A containing n numbers

Solution 2 ¥ N2

Tip: use itertools (similar to np.cumsum())

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the
slice whose element sum 4 ;1 Alk] is larger or equal than the
sum of any other slice

Accumulate of itertools is done in C so it from itertools import accumulate

is faster A= [1,2,3,-3,12,-4,1,-1,-2,1]
print(A)

print(list(accumulate(A)))

Table of Contents
itertools — Functions
creating iterators for efficient
looping

+ Itertool functions

+ ltertools Recipes

Previous topic

Functional Programming
Modules

Next topic
functools — Higher-order
functions and operations on
callable objects

This Page

Report a Bug
Show Source

itertools — Functions creating iterators for efficient
looping

This module implements a number of iterator building blocks inspired by constructs from APL, Haskell, and SML.
Each has been recast in a form suitable for Python.

The module standardizes @
combination. Together, they fo
and efficiently in pure Python.

nt tools tMRt are useful by themselves or in
b0 construct specialized tools succinctly

For instance, SML provides a tabulation tool: tabulate(f) which produces a sequence f(0), f(1),
The same effect can be achieved in Python by combining map () and count () to form map(f, count()).

These tools and their built-in counterparts also work well with the high-speed functions in the operator module.
For example, the multiplication operator can be mapped across two vectors to form an efficient dot-product:
sum(map (operator.mul, vectorl, vector2)).

Infinite iterators:

Iterator Arguments Results Example

count() start, [step] start, start+step, start+2*step, ... ;zunt(le) 2R IOIBI0R13
cycle() p po, p1, ... plast, po, p1, ... :yglg(DABCD IE=ZNANBRGID
repeat() elem [,n] elem, elem, elem.... efdlesslyiorypito.n repeat(10, 3) --> 10 10 10

times
Iterators terminating on the shortest input sequence:

Iterator Arguments Results Example

accumulate([1,2,3,4,5]) -->

pO, p0+pl, pO+pl+p2,
accumulate()) (A

p [.func]

https://docs.python.org/3/library/itertools.html

1, 2, 3,
[1, 3, 6,

3
-3,

3,

12,::-4;
15, A,

1,
12,

N
11, 9,

-2, 1]

10]

Solution 2 ¥ N2

Tip: use itertools (similar to np.cumsum())

Accumulate of itertools is done in C so it
is faster

from itertools import accumulate

def max sum v2 bis(A):
N = len(A)
max so far = 0
for i in range(N):
tot = max(accumulate(A[i:]))
max so far = max(max so far,tot)
return max so far

A=1[1,3,4,-8,2, 3,-1,3,4,-3,10,-3,2]
print(A)
print(max sum v2 bis(A))

[11 3: 4' '81 21 3r ’11 3; 4: '31 10: '30 2]
18

Don’t
FORGET!
— =
CINC)

Can we do any better than this?

e Input: a list A containing n numbers

e Output: a slice (sublist) Afi : j] of maximal sum, i.e. the

slice whose element sum Zj ;1 Alk] is larger or equal than the
sum of any other slice

from itertools import accumulate

A=11,2,3,-3,12,=4.),=1,=2:1]
print(A)
print(list(accumulate(A)))

[1; 2, B3 -3+:12,:-8; 1; -1y =21
[1, 3; 6, 3,:15,.1%,:12, 11, 9, 101

Similar as before but max computed on the

<:: accumulated sum (accumulate “hides” a for loop)

N intervals, sum of N elements each time: ~
N~2 operations

IMPORTANT NOTE:
The improvement comes from implementation
not algorithm! (code faster by a constant factor)

e Input: a list A containing n numbers

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the

Solution 3 ™ N log(N)
slice whose element sum Zi;i Alk] is larger or equal than the

Divide et impera (Divide and conquer) sum of any other slice

Idea:
- Splititin two equally sized sublists

- Find maxL as the sum of the maximal
sublist on the left part

- Find maxR as the sum of the maximal
sublist on the right part

- Get the solution as max(maxL, maxR)

maxL maxR

Is this correct? Do you see any problem with this?

e Input: a list A containing n numbers

e Output: a slice (sublist) Afi : j] of maximal sum, i.e. the

Solution 3 ™ N log(N)
slice whose element sum Zj ;1 Alk] is larger or equal than the

Divide et impera (Divide and conquer) sum of any other slice
Idea:

- Splititin two equally sized sublists

- Find maxL as the sum of the
maximal sublist on the left part

- Find maxR as the sum of the
maximal sublist on the right part

- maxLL+maxRR is the value of the
maximal sublist accross the two
parts

maxL maxLL maxRR maxR

e Input: a list A containing n numbers

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the

Solution 3 ™ N log(N)
slice whose element sum Zi;i Alk] is larger or equal than the

Divide et impera (Divide and conquer) sum of any other slice
Idea:

- Splititin two equally sized sublists

- Find maxL as the sum of the
maximal sublist on the left part

- Find maxR as the sum of the Get the point before the mid-point M and go to the
maximal sublist on the right part left until the sum increases.
Repeat starting from M+1 and going to the right.

- maxLL+maxRR is the value of the Result is: max(maxL, maxLL+maxRR, maxR)

maximal sublist accross the two
parts

M M#1

maxL maxLL maxRR maxR

. N e Input: a list A containing n numbers
Solution 3 ™ N log(N)))

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the
slice whose element sum 4 ;1 Alk] is larger or equal than the

Divide et impera (Divide and conquer) sum of any other slice
def max _sum v3 rec(A, i, j):

if 1 ==j:
return max(0, A[1])

m= (i+j)//2

maxML = ©

s =0

for k in range(m,i-1,-1):
s = s + A[k]
maxML = max(maxML, s)

maxMR = 0

s=0

£as }“srfngff'((';“'lv L) Recursive code: calls itself on a smaller sublist.
maxMR = max(maxMR, s)

maxL = max_sum v3 rec(A,i,m) #Left maximal subvector Runs in N*log(N) ... more on this later

maxR = max_sum v3 rec(A,m+1,j) #Right maximal subvector
return max(maxL, maxR, maxML + maxMR)
def max sum v3(A):

return max_sum v3 rec(A,0,len(A) - 1)

A = [1,3,4,-8,2, 3,-1,3,4,-3,10,-3,2] i m i
print(A) J
print(max sum v3(A))

[11 3: 41 '81 2' 31 '11 3! 41 -31 101 -35 2]
18 maxL maxLL maxRR maxR

. N e Input: a list A containing n numbers
Solution 3 ™ N log(N)))

e Output: a slice (sublist) Afi : j] of maximal sum, i.e. the

Divide et impera (Divide and conquer)
Tip: use itertools

def max sum v3 rec bis(A,i,j):

if i == j:
return max(0,A[1])
m= (i+j)//2

maxL = max sum v3 rec bis(A,i,m)

maxR = max sum v3 rec bis(A, m+1l, j)

maxML = max(accumulate(A[m:-len(A) + i -1: -1]))
maxMR = max(accumulate(A[m+1:j+1]))

return max(maxL, maxR, maxML+ maxMR)

def max sum v3(A):
return max sum v3 rec bis(A,0,len(A) - 1)

A=1][1,3,4,-8,2, 3,-1,3,4,-3,10,-3,2]
print(A)
print(max_sum v3(A))

[1: 3: 4: '81 2: 3: -ll 31 4: '31 101 -31 2]
18

slice whose element sum 37 ;1 Alk] is larger or equal than the
sum of any other slice

14 13 12 11 -10 9 -8 -7 6 5 -4 -3 2 -1

A = list(range(10))
print(A)

#interval 4-2 going to the left...

M=4
a -
print(-len(A) + i - 1)

A[M: -len(A) + i -1 : -1]

fe, 1, 2, 3, 4, 5, 6, 7, 8, 9]
=9

[4; 3; 2]

Recursive code: can use itertools as before to
accumulate the sum.

Runs in N*log(N) ...just a little bit faster, more on
this later

m]

maxL maxLL maxRR maxR

e Input: a list A containing n numbers

e Output: a slice (sublist) Afi : j] of maximal sum, i.e. the

: n
Solution 4 ™ N
slice whose element sum Zj ;1 Alk] is larger or equal than the

Dynamic Programming sum of any other slice

Let’s define maxHere[i] as the maximum
value of each sublist that ends in i.

The maximum value in maxHere is the
maximal sum.

0 1 <0

Here|i| =
mazHereli] max(mazHere[i — 1] + A[i],0) /i >0

condition <0
needs to fix the first element of
the list (i.e. when i=0)

e Input: a list A containing n numbers

e Output: a slice (sublist) Afi : j] of maximal sum, i.e. the

H nJ
Solution4 ™ N
slice whose element sum 37 ;1 Alk] is larger or equal than the

Dynamic Programming sum of any other slice

Let’s define maxHere[i] as the maximum value of
each sublist that ends ini.

The maximum value in maxHere is the maximal

sum.
. def max_sum v4(A):
mazHereli] = 0 . , %<:0 max_so_far = 0 #Max found so far |
max(mazHere[i — 1] 4+ A[i],0) i >0 max_here = 0 #Max slice ending at cur pos

for i in range(len(A)):
max_here = max(A[i] + max _here, 0)
max_so far = max(max _so far, max here)
return max so far

A=1][1,3,4,-8,2, 3,-1,3,4,-3,10,-3,2]
print("{}".format(A))
print(max_sum v4(A))

[11 3: 41 '81 2r 3: 'lv 3' 4: '31 10: '3; 2]
18

e Input: a list A containing n numbers

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the

M nJ
Solution4 ™~ N
slice whose element sum Zi;i Alk] is larger or equal than the

Dynamic Programming sum of any other slice

def max_sum v4(A):
max_so _far = 0 #Max found so far
max_here = 0 #Max slice ending at cur pos
for i in range(len(A)):
max_here = max(A[i] + max_here, 0)
max_so_far = max(max_so_far, max_here)
return max_so far A

A — [1'3:41'8121 3:'1:3,4"3,10,'3,2]
print("{}".format(A))
print(max_sum v4(A))

[11 3: 4; '8r 21 31 '15 35 4: ’31 lel '31 2]
18 max_so_far: | o 1 4 8 8 8 8 8 8 11 11 18 | 18 | 18

max_here: | o |1 |4 |8 |0 |2 |5 |4 |7 |11 |8 |18 |15 |17

Goes through A once and computes ONE
sum and two max of TWO values:
runs in ~N

Solution4 “ N

Dynamic Programming
Stores also the indexes

def max sum v4 bis(A):
max_so_far = @ #Max found so far
max_here = @ #Max slice ending at cur pos
start = 0 #start of cur maximal slice

end = @ #end of cur maximal slice A
last = @ #beginning of max slice ending here
for i in range(len(A)): max_here:
max_here = A[i] + max_here N
if max_here <= 0:
max_here = @ max_so_far:

last =i + 1
if max _here > max so far:

max_so far = max_here start:
start = last
end = 1
last:
return (start,end,max _so far)
end:

A=[1,3,4,-8,2, 3,-1,3,4,-3,10,-3,2]
print("A: {}".format(A))
print(max sum v4 bis(A))

A 3,33, -4, -8, 2, 3; <1,.:3, 4, =3, 10,
(4, 10, 18)

-3, 2]

e Input: a list A containing n numbers

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the

slice whose element sum Zi;i Alk] is larger or equal than the

sum of any other slice

1 3 4 -8 2 3 -1 3 4 -3 10 | -3 2
1 4 8 0 2 5 4 7 1 8 18 | 16 | 17
1 4 8 8 8 8 8 8 1 11 18 | 18 | 18
0 0 0 0 0 0 0 0 4 4 4 4 4
0 0 0 4 4 4 4 4 4 4 4 4 4
0 1 2 2 2 2 2 2 8 8 10 | 10 | 10

e Input: a list A containing n numbers

Running times...

o Output: a slice (sublist) A[i : j] of maximal sum, i.e. the
slice whose element sum Zi;i Alk] is larger or equal than the
sum of any other slice

100000 Bont
— O(n3)
: —— 0(n?)
80000 A ----- 0(n?) (accumulate)
: —— O(nlogn)
----- O(nlogn) (accumulate)
— 0(n)
—~ 60000 A
7]
E
Q
£
F 40000 -
20000 A
0 = l‘—— T T T
2000 4000 6000 8000 10000
Size

Some definitions...

Computational problem

The formal relationship between the input and the desired output

Algorithm

@ The description of the sequence of actions that an executor
must execute to solve the problem

@ Among their tasks, algorithms represent and organize the
input, the output, and all the intermediate data required for
the computation

Some history...

@ Ahmes’ Papyrus (1850 BC, peasant algorithm for multiplication)

@ Numerical algorithms have been studied by Babylonians and
Indian mathematicians
@ Algorithms used even today have been studies by Greek
mathematicians more than 2000 years ago
e Euclid’s Algorithm for the greatest common divisor

o Geometrical algorithms (angle bisection and trisection, tangent
drawing, etc)

https://en.wikipedia.org/wiki/Rhind Mathematical Papyrus
D

https://en.wikipedia.org/wiki/Rhind_Mathematical_Papyrus

Algorithms: the name...

- Abu Abdullah Muhammad bin Musa al-Khwarizmi

e He was a Persian mathematician, astronomer,
astrologer, geographer

e He introduced the indian numbers in the western
world

@ From his name: algorithm

‘\.,_‘

~ Al-Kitab al-muhtasar fi hisab al-gabr wa-l-muqgabala

e His most famous work (820 AC)
e Translated in Latin with the title: Liber algebrae
et almucabala

https://en.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Khwarizmi

https://en.wikipedia.org/wiki/Muhammad_ibn_Musa_al-Khwarizmi

Computational problems: examples

Minimum

The minimum of a set S is the element of S which is smaller or
equal that any other element of S.

min(S) =a< Jae€S:Vbe S:a<b

Looukp
Let S = sg,s1,...,8,—1 be a sequence of distinct, sorted numbers,
ie. sp < s1 <...< sp—1. To perform a lookup of the position of

value v in S corresponds to returning the index ¢ such that 0 <1 < n,
if v is contained at position ¢z, —1 otherwise.

i Fe{0,...,n—1}:5;=v

—1 otherwise

lookup(S,v) = {

Computational problems: examples

Minimum

The minimum of a set S is the element of S which is smaller or
equal that any other element of S.

min(S) =a< JacS:Vbe S:a<b

Looukp
Let S = sg,5s1,...,8,—1 be a sequence of distinct, sorted numbers,
ie. sp < 81 < ...< sp—1. To perform a lookup of the position of

value v in S corresponds to returning the index ¢ such that 0 < i < n,
if v is contained at position 7, —1 otherwise.

lookup (S, v) = —1 otherwise

{i Jie {0,....,n—1}:S;=v

Note: we described a relationship between input and output. Nothing is said on_how to compute
the result (that’s the difference between math and computer science :-))

Naive solutions

Minimum
To find the minimum of a set, compare each element with every

other element; the element that is smaller than any other is the
minimum.

Lookup

To find a value v in the sequence S, compare v with any other
element of S, in order, and return the corresponding index if a
correspondence is found; returns —1 if none of the elements is equal
to v.

Computational
Problem

$

First, let’s translate
the computational
problem into an
algorithm to solve it.

Then, make it more
efficient, if possible!

Naive solutions: the code

def my min(S):
for x in S:
isMin = True
for y in S:
if x > y:
isMin = False
if isMin:
return x

A= [7; -1, 9,121, -3, 4, 13]

print(A)
print("min: {}".format(my min(A)))

[7, -1, 9, 121, -3, 4, 13]
min: -3

Naive solutions: the code

def my min(S):
for x in S:
isMin = True
for y in S:
if x > y:
isMin = False
if isMin:
return x

A=1[7, -1, 9,121, -3, 4, 13]

print(A)
print("min: {}".format(my min(A)))

[7, -1, 9, 121, -3, 4, 13]
min: -3

This code also compares an element with itself...
B

Naive solutions: the code

def my min(S): def lookup(L, v):
for x in S: for i in range(len(L)):
isMin = True if L[i] == v:
for y in S: return 1
if x > y: return -1
isMin = False

my list = [1, 3, 5, 11, 17, 121, 443]

if isMin: print(my list)
return x print("{} in pos: {}".format(17,
lookup(my list, 17)))
A=1[7, -1, 9,121, -3, 4, 13] print("{} in pos: {}".format(4,
lookup(my list, 4)))
print(A)

print("min: {}".format(my min(A)))

1,235,755 1Lk, 17, 321,443
[7; =1; 9, 121; <3; &; 13] []

/ 17 in pos: 4
min: -3 4 in pos: -1 4
7 -1 9 121 | -3 4 13 1 3 5 11 17 | 121 | 443

These are direct translations of the computational problems. Can we do better?

Algorithm evaluation

Does it solve the problem in a correct way?

e Mathematical proof vs informal description
@ Some problems can only be solved in an approximate way

@ Some problems cannot be solved at all

Does it solve the problem in an efficient way?

e How to measure efficiency
@ Some solutions are optimal: you cannot find better solutions

e For some problems, there are no efficient solutions

Don’t
FORGET!

Note on efficiency: algorithm efficiency has a bigger impact on performance than technical details é; A
(e.g. using Python vs. C, itertools vs sum etc...) ,

Efficiency: time and space

Algorithm complexity

Analysis of the resources employed by an algorithm to solve a pro-
blem, depending on the size and the type of input

Resources

e Time: time needed to execute the algorithm
o Should we measure it with a cronometer? <:

o Should I measure it by counting the number of elementary
operations?

@ Space: amount of used memory

e Bandwidth: amount of bit transmitted (distributed
algorithms)

Normally, we focus on time because there is a relationship between TIME and SPACE. Intuitively,
Using N*2 space will require at least N*2 time to read the input... Normally, TIME > SPACE

g

Don’t
FORGET!
~ =

we did this

to have an
“informal” idea of
the performance
but this is a bad
idea because the
time depends on
very many factors!

A more abstract
representation is
needed!

Don’t
FORGET!
S
L)

Algorithm evaluation: minimum

How many comparisons do we perform?
Compare each element with ALL the elements

def my min(S): If len(S) = n:
for x in S: forx inS:
:2':1; inTgl:e This is the most fory |n>S.
aF X *y expensive operation x>y
isMin = False (might work on ints,
if isMin: strings, files,...) = N*n comparisons
return Xx

A=[7, -1, 9,121, -3, 4, 13]

Naive algorithm “has complexity”: n"2

print(A) In more details:

print("min: {}".format(my _min(A))) Best case: n comparisons (S[0] min)

[7; -1, 9, 121; -3; &; 13]

min: -3 Worst case: n*n comparisons (S[-1] is min)

Any ideas?

Can we do better?

Algorithm evaluation: minimum

How many comparisons do we perform?
Compare every element with the OTHER elements

def my min v2(S):

for i in range(len(S)):)
How about this?

isMin = True
for j in range(len(S)): Easy, we compare
if i I= j: integers!

This is the most
expensive operation
(might work on ints,
strings, files,...)

if S[i] > S[j]:
isMin = False
if isMin:
return S[i]
A=, =%, 9,321, =3, @4, 13}
print(A)
print("min: {}".format(my min v2(A)))

[7; -1..9, 121,
min: -3

-3, 4, 13]

If len(S) = n:
for x in1,...,n:
foryini,...n:
if x!=j:
x>y

= n*(n-1) = n*2 - n comparisons

Naive algorithm “has complexity”: n*2
This algorithm: n*2 - n

In more details:
Best case: n-1 comparisons (S[0] min)

Worst case: n*(n-1) comparisons (S[-1] is min)

Can we do better?

Algorithm evaluation: minimum, a better solution

How many comparisons do we perform?
Accumulate the minimum found so far and compare the others with it

def my faster min(S): If len(S) = n:
min_so far = S[0] #first element while i=1,...,n-1
i=1 . .
S <
while i < len(S): This is the most Sli] < min_so_far
if s[i] < min_so_far: - expensive operation .
min so far = S[i] (might work on ints, =+ n-1 comparisons
i=1i+l

return min so far strings, files,...
A Naive algorithm “has complexity”: n*2 - n
A=[7, -1, 9,121, -3, 4, 13]
: Better algorithm “has complexity”: n-1
print(A)

print("min: {}".format(my min(A))) (regardless if S[0] is the min of if S[-1] is)

[7; =339 1215 +3; 4; 13]
min: -3

Algorithm evaluation: lookup

How many comparisons do we perform?

def lookup(L, v):
for i in range(len(L)):

3F L[] = v:
return i
return -1

my list = [1, 3, 5, 11, 17, 121, 443]
print(my_list)
print("{} in pos: {}".format(17,

lookup(my list, 17)))
print("{} in pos: {}".format(4,

lookup(my list, 4)))

il 35755 TE,. 17, 321,.4943]
17 in pos: 4
4 in pos: -1

| compare v with first element, then to
the second etc. when | find it or when |
checked the whole list | stop.

= N comparisons

Naive algorithm “has complexity”: n
(in the worst case: v is not there!)

11 17 | 121 | 443

Algorithm evaluation: lookup, better solution (?)

How many comparisons do we perform?

def lookup(L, v)

for i in range(len(L)):
if L[] =v:
return i
elif L[i] > v:
return -1

return -1
my list = [1, 3,
print(my list)
print("{} in pos

print("{} in pos

print("{} in pos

E1;:35: 55 113 7
17 in pos: 4
4 in pos: -1

500 in pos: -1

5, 11, 17, 121, 443]

: {}".format (17,

lookup(my list, 17)))
: {}".format (4,

lookup(my list, 4)))

: {}".format (500,
lookup(my list, 4)))

, 121, 443]

The list is sorted. | loop through the list,
if | find value > v | can stop.

Generally faster, if L is big (i.e. n is big) ,
but worst case (es. 500 below)

= 2*n comparisons

Naive algorithm “has complexity”: n
“Better” algorithm “has complexity”: 2*n

——

3 5 1 17 121 443

Algorithm evaluation: best, worst and average case

What is the most important case?

Not interested.

Best: lookup(L,1) solved in 1 step Il...... = W
e are never

lucky!!

Normally, the

Worst: lookup(L,10) solved in 9 steps ¢ most informative

case

Sometimes

Average: lookup(L,6) solved in 4 steps ...@... Lo interesting

Lookup: more efficient algorithm

The list is sorted...

lookup(L,v)

ex.lookup(L28) 17T 12015 21 27 29 (41 67

Lookup: a more efficient algorithm

The list is sorted...
lookup(L,v)
ex. lookup(L,28)
Let’s start considering the
median value, m.
If Lim] =v. Found it!
if Lim] > v. Search L[0:m]

if L[m] <v. Search L[m+1:]

21

Lookup: a more efficient algorithm

The list is sorted...

lookup(L,v)

ex. lookup(L,28) 21 ----

Let’s start considering the
median value, m.

If Lim] =v. Found it!
if Lim] > v. Search L[0:m] 21<28 = ignore L[O:m]

if L[m] <v. Search L[m+1:]

Lookup: a more efficient algorithm

The list is sorted...

lookup(L,v)

ex. lookup(L,28) -

Let’s start considering the
median value, m.

If Lim] =v. Found it!
if Lim] > v. Search L[0:m] 28 <29 =»ignore L[m+1:]

if L[m] <v. Search L[m+1:]

29

Lookup: a more efficient algorithm

The list is sorted...

lookup(L,v)

ex. lookup(L,28) -

Let’s start considering the
median value, m.

If Lim] =v. Found it!
if Lim] > v. Search L[0:m] 28 <29 =»ignore L[m+1:]

if L[m] <v. Search L[m+1:]

29

Lookup: a more efficient algorithm

The list is sorted...

lookup(L,v) m
ex. lookup(L,28) 27
Let’s start considering the

median value, m.

If Lim] =v. Found it!

if Lim] > v. Search L[O:m] 27 !'=28 » NOT FOUND

if L[m] <v. Search L[m+1:]

Lookup: the recursive code (binary search)

def lookup rec(L, v, start,end):
ifend < start: «___ when only one element left
.return o start=end=m
else: . .
n = (start + end)//2 at next iteration end < start (2 |7)22][5 |21 [l 20 | 41][57 |

if L[m] == v: #found!
return m
elif v < L[m]: #look to the left

return lookup rec(L, v, start, m-1)
else: #look to the right
return lookup rec(L, v, m+l, end)

start=end=m

v =28
start m end
my list = [1, 3, 5, 11, 17, 121, 443] 17 1215 w2 2 4 s

print(my list)
print("{} in pos: {}".format(17,
lookup rec(my list, 17, 0, len(my list)-1))) st m end

print("{} in pos: {}".format(4, BEEEE B

lookup rec(my list, 4, 0, len(my list)-1)))

print("{} in pos: {}".format(443,
lookup rec(my list, 443, 0, len(my list)-1)))

[1: 3; 5; 11, 37,121, 443}
17 in pos: 4
4 in pos: -1
443 in pos: 6

Lookup: the recursive code (binary search)

def lookup rec(L, v, start,end):
if end < start:
return -1
else:
m = (start + end)//2

if L[m] == v: #found!)
JEturs w ‘ 2 comparisons (==, <) at each call

elif v < L[m]: #look to the left
return lookup rec(L, v, start, m-1)
else: #look to the right
return lookup rec(L, v, m+l, end)

How many total comparisons?

Anyone wants to try?

my list = [1, 3, 5, 11, 17, 121, 443]
print(my list)
print("{} in pos: {}".format(17,
lookup rec(my list, 17, 0, len(my list)-1)))
print("{} in pos: {}".format(4,
lookup rec(my list, 4, 0, len(my list)-1)))

print("{} in pos: {}".format(443,
lookup rec(my list, 443, 0, len(my list)-1)))

[1: 3; 5; 11, 37,121, 443}
17 in pos: 4

4 in pos: -1

443 in pos: 6

m
HEEe

Lookup: the recursive code (binary search)

def lookup rec(L, v, start,end):
if end < start: 2 comparisons (==, <) at each call
return -1
else:
m = (start + end)//2
if L[m] == v: #found!
return m
elif v < L[m]: #look to the left
return lookup rec(L, v, start, m-1)

How many total comparisons?

At beginning 1024 elements...

else: #look to the right then 512...
return lookup rec(L, v, m+l, end) then 256...
then 128...
then 64...
list = [1, 3, 5, 11, 17, 121, 443] then 32...
m)’_ 1s =) ’ r ’ ’ ’
print(my list) then 16...
print("{} in pos: {}".format(17, then 8...
lookup rec(my list, 17, 0, len(my list)-1))) then 4...
print("{} in pos: {}".format(4, then 2
lookup rec(my list, 4, 0, len(my list)-1))) o
- B - then 1
print("{} in pos: {}".format(443,
lookup rec(my list, 443, 0, len(my list)-1))) + 10g2(1024) +1 iterations

[1: 3 5; 11, 37, 121, 4431
17 in pos: 4 “Complexity” ¥ 2 *log2 n

HEEe

443 in pos: 6

Operations

Lookup analysis

1000 A

= |ookup: ~n
= lookup_rec: ~log2(n)

0 200 400 600
Input size [n]

800

1000

Operations

200

400 600
Input size [n]

800

1000

Correctness

Invariant
(A condition that is always true in a specific point in an algorithm]

- Loop invariant \

@ A condition that is always true at the beginning of a loop
iteration

e what is exactly the beginning of a loop iteration?

Class invariant

@ A condition always true when the execution of a class method
is completed

Correctness

The loop invariant helps us proving that an iterative algorithm is correct:
By induction...

Initialization (base case):
Prove that the condition is true before the first iteration

Conservation (inductive step):
If the condition is true before the iteration of the loop, then prove that it
remains true at the end (before the next iteration)

Conclusion:
At the end, the invariant must represent the "correctness" of the algorithm

Correctness of min

Invariant: At the beginning of iteration i of the while loop, min_so_far contains the partial
minimum of the elements in S[0:i].

def my faster min(S):

min so far = S[0] #first element Base cgse:
o min_so_far = S[0] IS the
while i < len(S): minimum of elements in S[0:1]

if S[i] < min so far:
min so far = S[i]
i=i+l

: Induction step:
return min so far

(assuming min_so_far is the

A=[7, -1, 9,121, -3, 4, 13] minimum of S[0:i]) at each
= s R iteration i, min_so_far is
print(A) updated IFF SJ[i] < min_so_far

print("min: {}".format(my min(A)))

17, -1,°9, 121, -3, 4, 13] min_so_far always contains
min: -3 [:i> e

min of elements S[0:i]

Correctness of lookup

Exercise: prove the correctness of lookup rec

def lookup rec(L, v, start,end):
if end < start:

return -1
else: i)/ This is a recursive code, we cannot use
m = (start + en N H H
TELIR] v Eraundl the loop invariant but can still prove the
return m correctness by induction.

elif v < L[m]: #look to the left

return lookup rec(L, v, start, m-1)
else: #look to the right

return lookup rec(L, v, m+l, end)

The induction can be done on the
number of elements in the list:
mleist = [1,.53,'5: 11, 17, 121, :443]
print(my list) = -
print("{} in pos: {}".format(17, n =end - start
lookup rec(my list, 17, 0, len(my list)-1)))
print("{} in pos: {}".format(4,
lookup rec(my list, 4, 0, len(my list)-1)))

print("{} in pos: {}".format(443,
lookup rec(my list, 443, 0, len(my list)-1)))

[1:: 35 5, 11; 37;:32), 443}
17 in pos: 4
4 in pos: -1
443 in pos: 6

def lookup rec(L, v, start,end):

Correctness of lookup if end < start:

return -1
else:
.. m = (start + end)//2
Exercise: prove the correctness of lookup_rec. if L[m] == v: #found!

By induction on n = end - start return m
elif v < L[m]: #look to the left
return lookup rec(L, v, start, m-1)
Base case (n = 0) else: #look to the right
return lookup rec(L, v, m+1l, end)

Inductive hypothesis: given a size n, let us assume that the algorithm is correct
for all sizesn’<n

Inductive step: given inductive hypothesis, prove invariant still holds for size n.

def lookup rec(L, v, start,end):

Correctness of lookup if end < start:

return -1
else:
.. m = (start + end)//2
Exgrmse: prove the correctness of lookup_rec. iF LIm] == v: #found!
By induction on n = end - start return m

elif v < L[m]: #look to the left
return lookup rec(L, v, start, m-1)
else: #look to the right

Base case (n = 0): if n == 0, this means that end < start.
return lookup rec(L, v, m+1l, end)

The algorithm returns =1. Correct given that if n == 0, v is not present.

Inductive hypothesis: given a size n, let us assume that the algorithm is correct
for all sizesn’<n

Inductive step: given a size n > 0, let m be the median element.

If L[m]==v, then the algorithm returns m, because m is the actual position of v —>
hence v is in m = start+end//2 that is in L[start:end]

If v < L[m], then if v is present, since S is sorted, it must be located in L[start:m].
By inductive hypothesis, lookup_rec(L, v,start, m-1) will return the correct
position of v if present, or -1 if not present (since m-1 - start is smaller than
n).

if v> L[m] is symmetric.

