
Scientific Programming:
Part B

Data structures 1

Luca Bianco - Academic Year 2020-21
luca.bianco@fmach.it
[credits: thanks to Prof. Alberto Montresor]

Introduction
Data

Abstract Data Type (ADT)

Primitive Abstract Data Types

In programming languages, data are pieces of information that can be
assigned to variables (i.e. values that can be assigned to variables)

A mathematical model, defined by a collection of values and a set of
operations that can be performed on them.

Primitive abstract data types that are provided directly by the language
(i.e. not in external modules)
Examples:

int : +,-,*, / , ...
boolean: and or, not, ...
strings: [], len(), +, …

Specification vs. Implementation

Specification

The specification of a type of data is its “manual”. It is a description of the
data that does not provide details

Implementation

The actual code (with all the specific details) that realizes (i.e. implements)
the abstract data type

Example: Real numbers vs IEEE-754
● “a real number is a value of a continuous quantity that can represent a distance along a line”
● IEEE-754 is a standard that defines the format for the representation of floating point

numbers

Sometime they differ!
>>> 0.1+0.2
0.30000000000000004

https://en.wikipedia.org/wiki/Quantity

Data structures

Data structures can be

● Linear: if the position of an element relative to the ones inserted
before/after does not change

● Static / Dynamic: depending on if the content or size can change
(for specific purposes static data structures might be more efficient)

Data structures

Sequence: description

How the
data is
organized

What we
can do with
the data

Sequence: specification (prototype)

Sequence: specification (prototype)

To build our “Sequence” data structure

“specifications”
 method prototype

ADT

“implementation”

Python code

Sequence: implementation (sketch)

Set: description

Set: abstract data type

Set: implementation (exercise)

note: use __iter__ to allow things like
for x in MySet:

...

Dictionary

Dictionary: ADT

We will get back to this in the
next lecture…

Linked lists

Linked lists (types)

Linked lists are dynamic collections of objects and pointers (either 1 or 2) that point to the next element in the
list or to both the next and previous element in the list.

Example: monodirectional list in python

Monodirectional list

%adds a node n to the Monodirectional list
placing it as the head
add(node n)

%searches for a node n and returns True if it is
found, false otherwise
boolean search(node n)

%removes a node n if it is found, does nothing
otherwise
remove(node n)

%produces the string representation of the
Monodirectional list as: el1 -> el2 -> … -> eln
__str__()

DATA next

Node

A list is a sequence
of nodes, the first
of which is the
head.

Elements are
added at the
beginning and
become the new
head

Example: monodirectional list in python

d1 next

d2 next

d3 next

head None

Add one element
(d_new)

d_new next

None

Monodirectional list in python: add

d1 next

d2 next

d3 next

None

Add one element
(d_new)

d_new next

head

Monodirectional list in python: remove

Remove one element
(d2)

d1 next

d2 next

d3 next

head None

Monodirectional list in python: remove

Remove one element
(d2)

d1 next

d2 next

d3 next

head None

The code

Monodirectional list in python: len?

How could we implement the len() operator (i.e. __len__)?

d1 next

d2 next

d3 next

None

d_new next

head

Go from first to last element and sum

Monodirectional list in python: __len__()?

How could we implement the len() operator (i.e. __len__)?

The code:

Complexity is Θ(n).
Is it possible to improve this?

Monodirectional list in python: __len__()?

Faster __len__().
Idea: store and update the number of elements present

The code:

Complexity is O(1).

...

Exercise: How about O(1) min/max
values? Hint: change again __init__,
add, and remove.

Bidirectional linked list

d1 prev next

d2 prev next

d3 prev next

None None

Each node now has:
● the data
● a prev pointer
● a next pointer

prev pointer of the first
element in the list is
None

next pointer of the last
element is None

Bidirectional linked list

Each node now has:
● the data
● a prev pointer
● a next pointer

prev pointer of the first
element in the list is
None

next pointer of the last
element is None

The list can have a
head and tail pointer

Head

Tail

Bidirectional linked list: append

Each node now has:
● the data
● a prev pointer
● a next pointer

Append: add a node as
next of the current tail

Head

Tail

Bidirectional linked list: insert at/remove

Each node now has:
● the data
● a prev pointer
● a next pointer

Insert at/remove :
reach the correct
position and update the
next/prev pointers of
the three involved
nodes

Insert at 2
First loop until you reach 2 (cur = cur.get_next())

Head Tail

Dynamic Vectors

L.insert(p, x)
L.append(x)

Dynamic Vectors

X Y Z W

L.insert(p, x)
L.append(x)

Dynamic Vectors

X Y Z W T

L.insert(p, x)
L.append(x)

Dynamic Vectors

X Y Z W T

L.insert(p, x)
L.append(x)

Dynamic Vectors

X Y Z W T

X Y Z W T

L.insert(p, x)
L.append(x)

Dynamic Vectors

doubling

increment

Dynamic Vectors: Amortized cost (doubling)

Amortized analysis
tells how the average
of the performance
of a set of operations
on a large data set
scales.

We consider a block
of operations.

Doubling
(we have to pay
the cost of
copying already
inserted elements)

ex. 0 elements in. Append now: 1 operation

Note: starting with an initial capacity bigger than 1 is a good idea!

Dynamic Vectors: Amortized cost (doubling)

Amortized analysis
tells how the average
of the performance
of a set of operations
on a large data set
scales.

We consider a block
of operations.

Doubling
(we have to pay
the cost of
copying already
inserted elements)

ex. 1 element in. Append now: 2 operations (1
add + 1 copy)

Note: starting with an initial capacity bigger than 1 is a good idea!

Dynamic Vectors: Amortized cost (doubling)

Amortized analysis
tells how the average
of the performance
of a set of operations
on a large data set
scales.

We consider a block
of operations.

Doubling
(we have to pay
the cost of
copying already
inserted elements)

ex. 2 elements in. Append now: 3 operations
(1 add + 2 copy)

Note: starting with an initial capacity bigger than 1 is a good idea!

Dynamic Vectors: Amortized cost (doubling)

Amortized analysis
tells how the average
of the performance
of a set of operations
on a large data set
scales.

We consider a block
of operations.

Doubling
(we have to pay
the cost of
copying already
inserted elements)

ex. 3 elements in. Append now: 1 operation

Note: starting with an initial capacity bigger than 1 is a good idea!

Dynamic Vectors: Amortized cost (doubling)

Amortized analysis
tells how the average
of the performance
of a set of operations
on a large data set
scales.

We consider a block
of operations.

Doubling
(we have to pay
the cost of
copying already
inserted elements)

ex. 4 elements in.

Dynamic Vectors: Amortized cost (doubling)

Amortized analysis
tells how the average
of the performance
of a set of operations
on a large data set
scales.

We consider a block
of operations.

Doubling
(we have to pay
the cost of
copying already
inserted elements)

ex. 4 elements in. Append now: cost 1 + 4 copy

Dynamic Vectors: Amortized cost (doubling)

Amortized analysis
tells how the average
of the performance
of a set of operations
on a large data set
scales.

We consider a block
of operations.

Doubling
(we have to pay
the cost of
copying already
inserted elements)

ex. 4 elements in. For next 4 elements the cost of
insertion is 1

Dynamic Vectors: Amortized cost (doubling)

Amortized analysis
tells how the average
of the performance
of a set of operations
on a large data set
scales.

We consider a block
of operations.

= n + 1 + 2 + 4 + … + n

Dynamic Vectors: Amortized cost (increment)

Amortized analysis
tells how the average
of the performance
of a set of operations
on a large data set
scales.

We consider a block
of operations.

increment
(have to pay the
cost of copying
already inserted
values)

Dynamic Vectors: Amortized cost (increment)

Amortized analysis
tells how the average
of the performance
of a set of operations
on a large data set
scales.

We consider a block
of operations.

Dynamic vectors: growth factor

Performance of Python’s data structures

The choice of the data structure has implications on the performances

It is important to know the properties of built-in structures to use them properly!

Performance of Python’s lists

lists are dynamic
vectors!

https://wiki.python.org/moin/TimeComplexity
Notes

[1] These operations rely on the "Amortized" part of "Amortized Worst Case". Individual actions may take surprisingly long, depending on the
history of the container.

https://wiki.python.org/moin/TimeComplexity

Reality check

O(n)

O(n)

O(1)

O(1)

O(1)

O(1)

collections.deque
https://docs.python.org/3.9/library/collections.html#collections.deque

https://docs.python.org/3.9/library/collections.html#collections.deque

