Scientific Programming: Part B

Lecture 5

Luca Bianco - Academic Year 2020-21
luca.bianco@fmach.it
[credits: thanks to Prof. Alberto Montresor]

Dictionary: ADT

```
DICTIONARY
% Returns the value associated to key k, if present; returns none
otherwise
OBJECT lookup(OBJECT k)
% Associates value v}\mathrm{ to key }
insert(OBJECT }k\mathrm{ , OBJECT v)
% Removes the association of key k
remove(OBJECT }k\mathrm{ )
```

Note: insert replaces the object associated to the key if already present

Possible implementations of a dictionary

	Unordered array	Ordered array	Linked List	RB Tree	Ideal impl.
insert ()	$O(1), O(n)$	$O(n)$	$O(1), O(n)$	$O(\log n)$	$O(1)$
lookup ()	$O(n)$	$O(\log n)$	$O(n)$	$O(\log n)$	$O(1)$
remove ()	$O(n)$	$O(n)$	$O(n)$	$O(\log n)$	$O(1)$

Ideal implementation: hash tables

- Choose a hash function h that maps each key $k \in \mathcal{U}$ to an integer $h(k)$
- The key-value $\langle k, v\rangle$ is stored in a list at position $h(k)$
- This vector is called hash table

Hash table: definitions

- All the possible keys are contained in the universe set \mathcal{U} of size u
- The table is stored in list $T[0 \ldots m-1]$ with size m
- An hash function is defined as: $h: \mathcal{U} \rightarrow\{0,1, \ldots, m-1\}$

Hash table: collisions

- When two or more keys in the dictionary have the same hash values, we say that a collision has happened
- Ideally, we want to have hash functions with no collisions

Direct access tables

- All the possible keys are contained in the universe set \mathcal{U} of size u
- The table is stored in list $T[0 \ldots m-1]$ with size m
- An hash function is defined as: $h: \mathcal{U} \rightarrow\{0.1 \ldots . . m-1\}$

In some cases: the set \mathcal{U} is already a (small) subset of \mathbb{Z}^{+}

Example: days of the year

Direct access tables

- We use the identity function $h(k)=k$ as hash function
- We select $m=u$

Problems

- If u is very large, this approach may be infeasible
- If u is large but the number of keys that are actually recorded is much smaller than $u=m$, memory is wasted

Perfect hash function

- All the possible keys are contained in the universe set \mathcal{U} of size u
- The table is stored in list $T[0 \ldots m-1]$ with size m
- An hash function is defined as: $h: \mathcal{U} \rightarrow\{0,1, \ldots, m-1\}$

Definition

A hash function h is called perfect if h is injective, i.e.

$$
\forall k_{1}, k_{2} \in \mathcal{U}: k_{1} \neq k_{2} \Rightarrow h\left(k_{1}\right) \neq h\left(k_{2}\right)
$$

Examples

- Students ASD 2005-2016
N. matricola in [100.090, 183.864]

$$
h(k)=k-100.090, m=83.774
$$

- Studentes enrolled in 2014
N. matricola in [173.185, 183.864]
$h(k)=k-173.185, m=10.679$

Problems

- Universe space is often large, sparse, unknown
- To obtain a perfect hash function is difficult

Hash functions

If collisions cannot be avoided

- Let's try to minimize their number
- We want hash functions that uniform distribute the keys into hash indexes $[0 \ldots m-1]$
we will have to deal with collisions anyway. More on this later...

Simple uniformity

- Let $P(k)$ be the probability that key k is inserted in the table
- Let $Q(i)$ be the probability that a key ends up in the i-th entry of the table

$$
Q(i)=\sum_{k \in \mathcal{U}: h(k)=i} P(k)
$$

- An hash function h has simple uniformity if:

$$
\forall i \in[0, \ldots, m-1]: Q(i)=1 / m
$$

Hash functions

To obtain a hash function with simple uniformity, the probability distribution P should be known

Example

if \mathcal{U} is given by real number in $[0,1[$ and each key has the same probability of being selected, then $H(k)=\lfloor k m\rfloor$ has simple uniformity

In the real world

- The key distribution may unknown or partially known
- Heuristic techniques are used to obtain an approximation of simple uniformity

Simple uniformity

- Let $P(k)$ be the probability that key k is inserted in the table
- Let $Q(i)$ be the probability that a key ends up in the i-th entry of the table

$$
Q(i)=\sum_{k \in \mathcal{U}: h(k)=i} P(k)
$$

- An hash function h has simple uniformity if:

$$
\forall i \in[0, \ldots, m-1]: Q(i)=1 / m
$$

Hash functions: possible implementations

Assumption

Each key can be translated in a numerical, non-negative values, by reading their internal representation as a number.

Example: string transformation

- $\operatorname{ord}(c)$: ordinal binary value of character c in ASCII
- $\operatorname{bin}(k)$: binary representation of key k, by concatenating the binary values of its characters
- $\operatorname{int}(b)$: numerical value associated to the binary number b
- $\operatorname{int}(k)=\operatorname{int}(b i n(k))$

Hash functions: possible implementations (the code)

```
def H(in string):
    d = "".join([str(bin(ord(x))) for x in in_string]).replace("b","")
    int d = int(d,2)
    return int_d
L = "Luca"
L = "Luca"
C= "Massimiliano" 
E = "Andrea"
A = "Alberto"
A1 = "Alan Turing"
```

people = [L, D, C, E, A, Al]
for p in people:
print("H('{}')\t=\t{:,}".format(p,H(p)))
H('Luca') = 1,282,761,569
H('David') = 293,692,926,308
H('Massimiliano') = 23,948,156,761,864,131,868,341,923,439
H('Andrea') = 71,942,387,426,657
H('Alberto') = 18,415,043,350,787,183
H('Alan Turing') = 39,545,995,566,905,718,680,940,135

```
```

L: ord(L) = 76 bin(76) = 0b1001100

```
L: ord(L) = 76 bin(76) = 0b1001100
u: ord(u) = 117 bin(117) = 0b1110101
u: ord(u) = 117 bin(117) = 0b1110101
c: ord(c) = 99 bin(99) = 0b1100011
```

```
c: ord(c) = 99 bin(99) = 0b1100011
```

```



ord \(\rightarrow\) ascii representation of a character

Replace the b that stands for binary!

\section*{Hash function implementation}

So far, we translated strings into big numbers.
Question for you: how do we convert these big numbers into values in \([0, \ldots, m-1]\) where \(m\) is the size of the hash table?
```

H('Luca')
H('David') =
H('Massimiliano')
H('Andrea')
H('Alberto')
H('Alan Turing')
1,282,761,569
293,692,926,308
= 23,948,156,761,864,131,868,341,923,439
71,942,387,426,657
1,942,387,426,657

```


\section*{Hash function implementation}

\section*{Division method}
- Let \(m\) be a odd number (prime)
- \(H(k)=\operatorname{int}(k) \bmod m\)

Be careful that:
\(\mathrm{m}=2^{\wedge} \mathrm{i}\) means to consider the i least significant bits
```

def H(in string):
d = "".join([str(bin(ord(x))) for x in in_string]).replace("b","")
int d = int(d,2)
return int d
def my_hash_fun(key_str, m = 383):
h = H(kēy_str)
hash_key = h % m
return hash_key
L = "Luca"
D = "David"
C = "Massimiliano"
E = "Andrea"
A = "Alberto"
A1 = "Alan Turing"
people = [L, D, C, E, A, Al]
prime = 383
for p in people:
print("{} \t {:,} mod {}\t\t Index: {}".format(p,H(p),prime,my_hash_fun(p,prime)))

```
Luca 1,282,761,569 mod 383 Index: 351
\(\begin{array}{ll}\text { David 293,692,926,308 mod } 383 & \text { Index: } 345\end{array}\)
Massimiliano 23,948,156,761,864,131,868,341,923,439 mod 383
Andrea \(\quad 71,942,387,426,657 \bmod 383\)
Alberto \(\quad 18,415,043,350,787,183 \bmod 383\)
Alan Turing \(\quad 39,545,995,566,905,718,680,940,135 \bmod 383\)
Index: 208
Index: 111
Index: 221
Index: 314

\section*{Conflicts: separate chaining}

\section*{Idea}
- The keys with the same value \(h\) are stored in a monodirectional list / dynamic vector
- The \(H(k)\)-th slot in the hash table contains the list/vector associated to \(k\)


Another possible method is to look for another place in the hash table where we can put the value (open addressing).

\section*{Separate chaining: complexity}
\begin{tabular}{|l|l|}
\hline\(n\) & Number of keys stored in the hash table \\
\hline\(m\) & Size of the hash table \\
\hline\(\alpha=n / m\) & Load factor \\
\hline\(I(\alpha)\) & \begin{tabular}{l} 
Average number of memory accesses to search a key that \\
is not in the table (insuccess)
\end{tabular} \\
\hline\(S(\alpha)\) & \begin{tabular}{l} 
Average number of memory accesses to search a key that \\
is not in the table (success)
\end{tabular} \\
\hline
\end{tabular}

Worst case analysis
- All the keys are inserted in a unique list
- insert(): \(\Theta(1)\)
- lookup(), remove(): \(\Theta(n)\)

\section*{Separate chaining: complexity}

\section*{Average case analysis}
- Let's assume the hash function has simple uniformity
- Hash function computation: \(\Theta(1)\), to be added to all searches
all places have the same probability of contain one element

How long the lists are?
- The expected length of a list is equal to \(\alpha=n / m\)

alpha is the average length of each list

\section*{Separate chaining: complexity}

Insuccess
- When searching for a missing key, all the keys in the list must be read
- Expected cost: \(\Theta(1)+\alpha\)

\section*{Success}
- When searching for a key included in the table, on average half of the keys in the
- list must be read.

What is the meaning of the load factor?
- The cost factor of every operation is influenced by the load factor
- If \(m=O(n), \alpha=O(1)\)
- In such case, all operations are \(O(1)\) in expectation
- If \(\alpha\) becomes too large, the size of the hash table can be doubled through dynamic vectors

\section*{Hash table: rules for hashing objects}

Rule: If two objects are equal, then their hashes should be equal
- If you implement __eq__(), then you should implement function __hash__() as well

Rule: If two objects have the same hash, then they are likely to be equal
- You should avoid to return values that generate collisions in your hash function.

Rule: In order for an object to be hashable, it must be immutable
- The hash value of an object should not change over time

\section*{Hash table: sample code (m = 11)}
class HashTable:
```


the table is a list of m empty lists

def init (self, m)

```
    self.table \(=\) [[] for \(i\) in range(m)]
\#converts a string into an integer (our keys will be strings only)
def H(self, key)
    d = "".join([str(bin(ord(x))) for x in key]).replace("b","")
    int \(d=\operatorname{int}(d, 2)\)
    return int_d
\#gets a string and converts it into a hash-key
def hash function(self,str obj)
    \#m is inferred from the length of the table
    \(m=\operatorname{len}(s e l f . t a b l e)\)
    h = self.H(str_obj)
    hash_key \(=\mathrm{h}\) \% m
    return hash_key
\#adds a pair (key,value) to the hash table
def insert(self, key, value):
    index = self.hash function(key)
    index \(=\) self.hash_function(key)
self.table[index].append((key, value))
\#removes the value associated to key if it exists with collisions
def remove(self, key)
    index \(=\) self. hash function(key)
    for el in self.table[index]:
        if el[0] == key:
            self.table[index].remove(el)
            break
\#returns the value associated to key or None
def search(self, key)
    index \(=\) self.hash function(key)
    for el in self.table[index]
        if el[0] == key:
            return el[1]
```

\#converts the table to a string
def __str__(self)
return str(self.table)

```
if \(\begin{gathered}\text { name } \\ \text { myHash } \\ = \\ \text { HashTable } \overline{(11)}\end{gathered}\)
myHash.insert("Luca",27)
myHash.insert("David",5)
myHash.insert("Massimiliano",12)
myHash.insert("Andrea",15)
myHash.insert("Alberto",12)
myHash.insert("Alan",1)
print(myHash)
key = "Luca"
print("\{\} -> \{\}".format(key, myHash.search(key)))
myHash. remove("Luca")
key \(=\) "Thomas"
print("\{\} -> \{\}".format(key, myHash.search(key)))
print(myHash)
[[('Andrea', 15)], [('Luca', 27), ('David', 5), ('Alberto', 12)], [], [], [('Alan', 1)], [] [('Massimiliano', 12)], [], [], [], []]

Luca -> 27
Thomas -> None
[[('Andrea', 15)], [('David', 5), ('Alberto', 12)], [], [], [('Alan', 1)], [], [('Massimiliano', 12)], [], [], [], []]

SOME CONFLICTS

\section*{Hash table: sample code (m = 17)}
class HashTable:
```


the table is a list of m empty lists

def init (self, m).

```
    self.table = [[] for \(i\) in range(m)]
\#converts a string into an integer (our keys will be strings only)
def H(self, key)
    d = "".join([str(bin(ord(x))) for x in key]).replace("b","")
    int \(d=\operatorname{int}(d, 2)\)
    return int_d
\#gets a string and converts it into a hash-key
def hash function(self,str obj)
    \#m is inferred from the length of the table
    \(m=\) len(self.table)
    h = self.H(str_obj)
    hash_key \(=\mathrm{h}\) \% m
    return hash_key
\#adds a pair (key, value) to the hash table
def insert(self, key, value):
    index = self.hash function(key)
    self.table[index].append((key, value))
\#removes the value associated to key if it exists
def remove(self, key)
    index \(=\) self.hash function(key)
    for el in self.table[index]:
        if el[0] == key:
            self.table[index].remove(el)
            break
\#returns the value associated to key or None
def search(self, key)
    index \(=\) self.hash function(key)
    for el in self.table[index]:
        if el[0] == key:
            return el[1]
\#converts the table to a string
def __str__(self)
    return str(self.table)
```

if name == " main "
myHas\overline{h}=Has\overline{hTable}\overline{(17)}
myHash.insert("Luca",27)
myHash.insert("David",5)
myHash.insert("Massimiliano",12)
myHash.insert("Andrea",15)
myHash.insert("Alberto",12)
myHash.insert("Alan",1)
print(myHash)
key = "Luca"
print("{} -> {}".format(key, myHash.search(key)))
myHash.remove("Luca")
key = "Thomas"
print("{} -> {}".format(key, myHash.search(key)))
print(myHash)

```
[[], [], [], [], [], [], [('Alan', 1)], [], [], [('Andrea', 15)], [], [], ['David', 5)],
[('Massimiliano', 12)], [], ['Luca', 27)], [('Alberto', 12)]]
Luca -> 27
Thomas -> None
[[], [], [], [], [], [], [('Alan', 1)], [], [], [('Andrea', 15)], [], [], [('David', 5)],
[('Massimiliano', 12)], [], [], [('Alberto', 12)]]

\section*{In python...}

\section*{Python sets and dict}
- Are implemented through hash tables
- Sets are degenerate forms of dictionaries, where there are no values, only keys

Unordered data structures
- Order between keys is not preserved by the hash function; this is why you get unordered results when you print them

\section*{Python built-in: set}
\begin{tabular}{|ll|c|c|}
\hline \multicolumn{2}{|c|}{ Operation } & Average case & Worst case \\
\hline x in S & Contains & \(O(1)\) & \(O(n)\) \\
\hline S.add (x) & Insert & \(O(1)\) & \(O(n)\) \\
\hline S.remove \((\mathrm{x})\) & Remove & \(O(1)\) & \(O(n)\) \\
\hline SlT & Union & \(O(n+m)\) & \(O(n \cdot m)\) \\
\hline S\&T & Intersection & \(O(\min (n, m))\) & \(O(n \cdot m)\) \\
\hline S-T & Difference & \(O(n)\) & \(O(n \cdot m)\) \\
\hline for x in S & Iterator & \(O(n)\) & \(O(n)\) \\
\hline len(S) & Get length & \(O(1)\) & \(O(1)\) \\
\hline \(\min (\mathrm{S}), \max (\mathrm{S})\) & Min, Max & \(O(n)\) & \(O(n)\) \\
\hline
\end{tabular}
\[
n=\operatorname{len}(\mathrm{S}), m=\operatorname{len}(\mathrm{T})
\]
https://docs.python.org/2/library/stdtypes.html\#set

\section*{Python built-in: dictionary}
\begin{tabular}{|ll|c|c|}
\hline \multicolumn{2}{|c|}{ Operation } & Average case & Worst case \\
\hline x in D & Contains & \(O(1)\) & \(O(n)\) \\
\hline D[] = & Insert & \(O(1)\) & \(O(n)\) \\
\hline = D [] & Lookup & \(O(1)\) & \(O(n)\) \\
\hline del D [] & Remove & \(O(1)\) & \(O(n)\) \\
\hline for x in S & Iterator & \(O(n)\) & \(O(n)\) \\
\hline len(S) & Get length & \(O(1)\) & \(O(1)\) \\
\hline \multicolumn{4}{|r|}{\(n=\operatorname{len}(\mathrm{S}), m=\operatorname{len}(\mathrm{T})\)}
\end{tabular}

\section*{Stack: Last in, first out queue}

\section*{Stack}

A linear, dynamic data structure, in which the operation "remove" returns (and removes) a predefined element: the one that has remained in the data structure for the least time
\begin{tabular}{ll}
\hline STACK & \\
\hline \% Returns True if the stack is empty & \% Removes the top element of the \\
boolean isEmpty() & stack and returns it to the caller \\
\% Returns the size of the stack & OBJECT pop() \\
int size() & \% Read the top element of the stack, \\
\% Inserts \(v\) on top of the stack & without modifying it \\
push(OBJECT \(v)\) & OBJECT peek()
\end{tabular}


\section*{Stack: Last in, first out queue}
\begin{tabular}{|c|c|c|}
\hline Stack Operation & Stack Contents & Return Value \\
\hline s.isEmpty() & [] & True \\
\hline s.push (4) & [4] & \\
\hline s.push('dog') & [4, 'dog'] & \\
\hline s.peek() & [4, 'dog'] & 'dog' \\
\hline s.push(True) & [4, 'dog', True] & \\
\hline s.size() & [4, 'dog', True] & 3 \\
\hline s.isEmpty () & [4, 'dog', True] & False \\
\hline s.push(8.4) & [4, 'dog', True, 8.4] & \\
\hline s.pop() & [4, 'dog', True] & 8.4 \\
\hline s.pop() & [4, 'dog'] & True \\
\hline s.size() & [4, 'dog'] & 2 \\
\hline
\end{tabular}


\section*{Stack: Last in, first out queue}

\section*{Possible uses}
- In languages like Python:
- Compiler: To balance parentheses
- In the the interpreter: A new activation record is created for each function call
- In graph analysis:
- To perform visits of the entire graph

\section*{Possible implementations}
- Through bidirectional lists
- reference to the top element


\section*{Stack: Last in, first out queue}

\section*{Possible uses}
- In languages like Python:
- Compiler: To balance parentheses
- In the the interpreter: A new activation record is created for each function call
- In graph analysis:
- To perform visits of the entire graph

\section*{Possible implementations}
- Through bidirectional lists
- reference to the top element


Push

def my func \((x)\) :
if \(x<=2\) :
return \(x\)
else:
print("\{\} + my_func(\{\})".format(x,x//4)) return \(x+m y\) func \((x / / 4)\)
print(my_func(80))

\(80+\) my func (20)
\(20+\) my func (5)
\(5+m y\) _func (1)
106
- Through vectors
- limited size, small overhead

\section*{Stack: Last in, first out queue}

\section*{Possible uses}
- In languages like Python:
- Compiler: To balance parentheses
- In the the interpreter: A new activation record is created for each function call
- In graph analysis:
- To perform visits of the entire graph

\section*{Possible implementations}
- Through bidirectional lists
- reference to the top element


Push

def my func \((x)\) :
if \(x<=2\) :
return \(x\)
else:
print("\{\} + my_func(\{\})".format(x,x//4)) return \(x+m y\) func \((x / / 4)\)
print(my_func(80))

\(80+\) my func (20)
\(20+\) my func (5)
\(5+m y\) _func (1)
106

\section*{Stack: Last in, first out queue}

\section*{Possible uses}
- In languages like Python:
- Compiler: To balance parentheses
- In the the interpreter: A new activation record is created for each function call
- In graph analysis:
- To perform visits of the entire graph

\section*{Possible implementations}
- Through bidirectional lists
- reference to the top element

def my func \((x)\) :
if \(x<=2\) :
return \(x\)
else:
print("\{\} + my_func(\{\})".format(x,x//4)) return \(x+m y\) func \((x / / 4)\)
print(my_func(80))

\(80+\) my func (20)
\(20+\) my_func (5)
\(5+\) my func(1)
106

\section*{Stack: Last in, first out queue}

\section*{Possible uses}
- In languages like Python:
- Compiler: To balance parentheses
- In the the interpreter: A new activation record is created for each function call
- In graph analysis:
- To perform visits of the entire graph

\section*{Possible implementations}
- Through bidirectional lists
- reference to the top element
- Through vectors
- limited size, small overhead


Push
def my func ( \(x\) ):
if \({ }^{-} x<=2\) :
return \(x\)
else:
print(" \{\} + my_func(\{\})".format(x,x//4)) return \(x+m y\) func \((x / / 4)\)
print(my_func(80))

\(80+\) my func (20)
\(20+\) my func (5)
\(5+\) my_func(1)
106
my_func(1)
my_func(5)
my_func(20)
my_func( 80\()\)

\section*{Stack: Last in, first out queue}

\section*{Possible uses}
- In languages like Python:
- Compiler: To balance parentheses
- In the the interpreter: A new activation record is created for each function call
- In graph analysis:
- To perform visits of the entire graph

\section*{Possible implementations}
- Through bidirectional lists
- reference to the top element
- Through vectors
- limited size, small overhead


Push
def my func ( \(x\) ):
if \({ }^{-} x<=2\) :
return \(x\)
else:
print(" \{\} + my_func(\{\})".format(x,x//4)) return \(x+m y\) func \((x / / 4)\)
print(my_func(80))

\(80+\) my func (20)
\(20+\) my func (5)
\(5+\) my_func(1)
106

\section*{Stack: Last in, first out queue}

\section*{Possible uses}
- In languages like Python:
- Compiler: To balance parentheses
- In the the interpreter: A new activation record is created for each function call
- In graph analysis:
- To perform visits of the entire graph

\section*{Possible implementations}
- Through bidirectional lists
- reference to the top element

def my func \((x)\) :
if \(x<=2\) :
return \(x\)
else:
print("\{\} + my_func(\{\})".format(x,x//4)) return \(x+m y\) func \((x / / 4)\)
print(my_func(80))

\(80+\) my func (20)
\(20+\) my func (5)
\(5+\) my func(1)
106

\section*{Stack: Last in, first out queue}

\section*{Possible uses}
- In languages like Python:
- Compiler: To balance parentheses
- In the the interpreter: A new activation record is created for each function call
- In graph analysis:
- To perform visits of the entire graph

\section*{Possible implementations}
- Through bidirectional lists
- reference to the top element


Push

def my func \((x)\) :
if \(x<=2\) :
return \(x\)
else:
print("\{\} + my_func(\{\})".format(x,x//4)) return \(x+m y\) func \((x / / 4)\)
print(my_func(80))

\(80+\) my func (20)
\(20+\) my func (5)
\(5+\) my func(1)
106

\section*{Stack: Last in, first out queue}

\section*{Possible uses}
- In languages like Python:
- Compiler: To balance parentheses
- In the the interpreter: A new activation record is created for each function call
- In graph analysis:
- To perform visits of the entire graph

\section*{Possible implementations}
- Through bidirectional lists
- reference to the top element

def my func \((x)\) :
if \(x<=2\) :
return \(x\)
else:
print("\{\} + my_func(\{\})".format(x,x//4)) return \(x+m y\) func \((x / / 4)\)
print(my_func(80))

\(80+\) my func (20)
\(20+\) my func (5)
\(5+m y\) _func (1)
106
- Through vectors
- limited size, small overhead

\section*{Stack: Last in, first out queue}

\section*{Possible uses}
- In languages like Python:
- Compiler: To balance parentheses
- In the the interpreter: A new activation record is created for each function call
- In graph analysis:
- To perform visits of the entire graph

\section*{Possible implementations}
- Through bidirectional lists
- reference to the top element


Push

def my func \((x)\) :
if \(x<=2\) :
return \(x\)
else:
print("\{\} + my_func(\{\})".format(x,x//4)) return \(x+m y\) func \((x / / 4)\)
print(my_func(80))

\(80+\) my func (20)
\(20+\) my func (5)
\(5+m y\) func (1)
106
- Through vectors
- limited size, small overhead

\section*{Stack: Last in, first out queue}

\section*{Possible uses}
- In languages like Python:
- Compiler: To balance parentheses
- In the the interpreter: A new activation record is created for each function call
- In graph analysis:
- To perform visits of the entire graph

\section*{Possible implementations}
- Through bidirectional lists
- reference to the top element
- Through vectors
- limited size, small overhead



Note: the stack has finite size!
import sys
def my funct2( \(x, s\) ):
if \(^{-} x<1\) :
return s
else:
return my funct2 \((x-1,5+x)\)
print(sys.getrecursionlimit()) print(my funct2(3100,0))
\#This would fix it \#print(sys.setrecursionlimit(3200)) \#print(my_funct2(3100,0))
<ipython-input-38-a7a6c79ddbc8> in my funct2(x, s) 5 return \(s\)

\section*{Stack: implementation}
class Stack:
\# initializer, the inner structure is a list
\# data is added at the end of the list
\# for speed
def init_(self):
self. data = []
returns the length of the stack (size)
def len (self):
return len(self. data)
\# returns True if stack is empty
def isEmpty(self):
return len(self.__data) \(==0\)
\# returns the last inserted item of the stack
\# and shrinks the stack
def pop(self):
if len(self.__data) >0:
return self.__data.pop()
\# returns the last inserted element without
\# removing it (None if empty)
def peek(self):
if len(self.__data) \(>0\) :
return self.__data[-1]
else:
return None
\# adds an element to the stack
def push(self, item):
self.__data.append(item)
\# transforms the Stack into a string
def str_(self):
if len(self. data) \(==0\) :
return "Stack([])"

\section*{else:}
out = "Stack([" + str(self.__data[-1]) for i in range(len(self. data) \(-2,-1,-1)\) : out += " | " + str(self.__data[i]) out += "])" return out

\section*{STACK}
\% Returns True if the stack is empty boolean isEmpty()
\% Returns the size of the stack boolean size()
\% Inserts \(v\) on top of the stack push (ObJect \(v\) )
\% Removes the top element of the stack and returns it to the caller object pop()
\% Read the top element of the stack, without modifying it
OBJECT peek()

\section*{linked list,...}
if _name_= "__main__":
\(\mathrm{S}=\mathrm{Stack}()\)
print(S)
print("Empty? \{\}". format(S.isEmpty()))
S.push("Luca")
S.push (1)
S. push (27)
print(S)
S.push ([1, 2, 3])
print("The stack has \{\} elements".format(len(S)))
print(S)
print("Last inserted: \{\}". format(S.peek()))
print("Removed: \{\}". format(S.pop()))
print("Stack now:")
print(S)

\section*{Stack([]) \\ Empty? True}

Stack([27 | 1 | Luca])
The stack has 4 elements
Stack([[1, 2, 3] | 27 | 1 | Luca])
Last inserted: [1, 2, 3]
Removed: [1, 2, 3]
Stack now:
Stack([27 | 1 | Luca])

\section*{Stack: uses}
- Check whether the following sets of parentheses are balanced
- \{ \{ ( [ ] [ ] ) \} ( ) \}
- [ [ \{ \{ ( ( ) ) \} \} ] ]
- [ ] [ ] [ ] ( ) \{ \}
- ( [ ) ]
- ( ( ( ) ] ) )
- [ \{ ( ) ]

\section*{Stack: exercise}

Ideas on how to implement par_checker using a Stack?

Simplifying assumption: only characters allowed in input are "\{[()]\}"

\section*{Possible solution:}
```

p1 = "{{([][])}()}"
p2 = "[{()]
p3 = "{[(())][{[]}]}"
p4 = "{[(())][{[]}]"

```
blocks \(=[p 1, ~ p 2, ~ p 3, ~ p 4]\)
for \(p\) in blocks:
    print("\{\} \t\tbalanced:\t \{\}".format(p,

Loop through the input string and...
- push opening parenthesis to stack
- when analyzing a closing parenthesis, pop one element from the stack and compare: if matching keep going, else return False
\begin{tabular}{lll} 
Desired output & & \\
\(\{\{([][])\}()\}\) & balanced: & True \\
{\([\{()]\)} & balanced: & False \\
\(\{[(())][\{[]\}]\}\) & balanced: & True \\
\(\{[(())][\{[]\}]\) & balanced: & False
\end{tabular}

\section*{Stack: exercise}
```

def par match(open p, close_p):
openers = "{[("
closers = "}])"
if openers.index(open_p) == closers.index(close_p):
return True
else:
return False
def par_checker(parString):
s = - Stack()
for symbol in parString:
if symbol in "([{":
s.push(symbol)
else:
if s.isEmpty():
return False
else:
top = s.pop()
if not par_match(top,symbol):
return False
return s.isEmpty()

```
```

p1 = "{{([][])}()}"
p2 = "{{()]
p3 = "{[(())][{[]}]}"
p3 = "{[(())][{[]}]}"

```
blocks \(=[p 1, \mathrm{p} 2, \mathrm{p} 3, \mathrm{p} 4]\)
for \(p\) in blocks:
    print("\{\} \t\tbalanced:\t \{\}". format(p,
                                    par_checker(p)))
                                    Desired output
                                    \(\{\{([][])\}()\} \quad\) balanced: True
[\{()] balanced: False
\(\{[(())][\{[]\}]\}\) balanced: True
\(\{[(())][\{[]\}]\) balanced: False

\section*{Queue: First in, first out queue (FIFO)}


\section*{Queue}

A linear, dynamic data structure, in which the operation "remove" returns (and removes) a predefined element: the one that has remained in the data structure for the longest time)
```

Queue
% Returns True if queue is empty % Extracts q from the beginning
boolean isEmpty()
of the queue
% Returns the size of the queue
int size()
% Inserts v}\mathrm{ at the end of the
queue
OBJECT dequeue()
% Reads the element at the top of
the queue
OBJECT top()
enqueue(OBJECT }v\mathrm{)

```

\section*{Queue: example}
\begin{tabular}{ll}
\hline QUEUE & \\
\hline \% Returns True if queue is empty & \begin{tabular}{l} 
\% Extracts \(q\) from the beginning \\
of the queue
\end{tabular} \\
boolean isEmpty() & \begin{tabular}{l} 
OBJECT dequeue() \\
\% Returns the size of the queue \\
\% Reads the element at the top of \\
int size()
\end{tabular} \\
\begin{tabular}{ll} 
\% Inserts \(v\) at the end of the \\
queue & OBJect top()
\end{tabular} \\
\hline
\end{tabular}
\(\left.\begin{array}{lll}\text { Queue Operation } & \text { Queue Contents } & \text { Return Value } \\ \hline \text { q.isEmpty() } & \text { [] } & \text { True } \\ \begin{array}{l}\text { q.enqueue(4) } \\ \text { q.enqueue('dog') }\end{array} & \text { [4] } & \text { ['dog', 4] }\end{array}\right]\)

\section*{Queue: uses and implementation}

Possible uses
- To queue requests performed on a limited resource (e.g., printer)
- To visit graphs

\section*{Possible implementations}
- Through lists
- add to the tail
- remove from the head
- Through circular array
- limited size, small overhead


\title{
Queue: as a list (with deque)
}

QUEUE
\% Returns True if queue is empty \% Extracts \(q\) from the beginning boolean isEmpty()
of the queue
\% Returns the size of the queue int size()
\% Inserts \(v\) at the end of the the queue
queue
enqueue (OBJECT \(v\) )
from collections import deque
class Queue:
def init (self):
\[
\text { self._data }=\text { deque() }
\]
def _len_(self): return len(self.__data)
def str___ \(_{\text {relf }}\) : \(\overline{\text { return }}\) str(self.__data)
def isEmpty(self): return len(self.__data) \(==0\)
def top(self): if len(self. data) \(>0\) : return self.__data[-1]
def enqueue(self, item): self.__data.appendleft(item)
def dequeue(self):
if len(self. data) \(>0\) : return self.__data.pop()
```

if __name__== "__main__":
Q = Queue()
print(Q)
print("TOP: {}".format(Q.top()))
print(Q.isEmpty())

```
    Q.enqueue(4)
    Q.enqueue('dog')
    Q.enqueue(True)
    print (Q)
    print("Size: \{\}". format(len(Q)))
    print(Q.isEmpty())
    Q.enqueue(8.4)
    print("Removing: '\{\}'". format(Q.dequeue()))
    print("Removing: '\{\}'". format(Q.dequeue()))
    print (Q)
    print("Size: \{\}".format(len(Q)))
deque([])
TOP now: None
True
deque([True, 'dog', 4])
Size: 3
False
Removing: '4'
Removing: 'dog'
deque([8.4, True])
Size: 2

Makes use of efficient deque object that provides \(\sim \mathrm{O}(1)\) push/pop
https://docs.python.org/3.7/library/collections.html\#collections.deque

\section*{Queue as a circular list}
- Implementation based on the modulus operation
- Pay attention to overflow problems (full queue)


\section*{Queue as a circular list: example}


By MuhannadAjjan [CC BY-SA 4.0] (http://creativecommons.org/licenses/by-sa/4.0) via Wikimedia

\section*{Queue as a circular list: example}


\section*{Queue as a circular list: example}

skipping a few typing steps.

\section*{Queue as a circular list: example}

skipping a few typing/reading steps...

\section*{Queue as a circular list: exercise}


QUEUE

\section*{Queue as a circular list: the code}
class CircularQueue:
```

```
def init_(self, N):
```

```
def init_(self, N):
    self.__data = [None for i in range(N)]
    self.__data = [None for i in range(N)]
    self.__head = 0
    self.__head = 0
    self. _head = 0
    self. _head = 0
    self.___size = 0
    self.___size = 0
    self._max = N
    self._max = N
def top(self):
def top(self):
    if self. size > 0
    if self. size > 0
            return self. data[self. head]
            return self. data[self. head]
def dequeue(self):
def dequeue(self):
    if self.__size > 0:
    if self.__size > 0:
        ret = self.__data[self.__head]
        ret = self.__data[self.__head]
            ret = self.__data[self.__head] 
            ret = self.__data[self.__head] 
            self.__head = (sel
            self.__head = (sel
            self._size
            self._size
def enqueue(self, item):
def enqueue(self, item):
    if self.__max > self.__size:
    if self.__max > self.__size:
        self.__data[self.__tail] = item
        self.__data[self.__tail] = item
        self.__tail = (se\overline{lf}.__tail + 1) % self.__max
        self.__tail = (se\overline{lf}.__tail + 1) % self.__max
        self.__size += 1
        self.__size += 1
    else:
    else:
        raise Exception("The queue is full. Cannot add to it")
        raise Exception("The queue is full. Cannot add to it")
def len__(self):
def len__(self):
        return self.__size
        return self.__size
def isEmpty(self):
def isEmpty(self):
    return self.__size == 0
    return self.__size == 0
def str__(self):
def str__(self):
    out ='
    out ='
    if len(self.,_data) == 0:
    if len(self.,_data) == 0:
        return
        return
    for i in range(len(self. data)):
    for i in range(len(self. data)):
        out += "[{}] ".format(i) + str(self.__data[i])
        out += "[{}] ".format(i) + str(self.__data[i])
        if i == self.__head:
        if i == self.__head:
        if out += " <-. Head"
        if out += " <-. Head"
        if i == self.__tail:
        if i == self.__tail:
            out += " <-- Tail"
            out += " <-- Tail"
        out +="\n"
```

 out +="\n"
    ```
    return out
```

class CircularQueue:

```
HELLLO
[日]
[1]
[1]
[2] [2] E
```

print(CQ)
print(out txt)
for t in text2
CQ.enqueue(t)
print(CQ)
while not CQ.isEmpty():
out_txt += str(CQ.dequeue())
print(out txt)
print(CQ)
\% Returns True if queue is empty \% Extracts q from the beginning boolean isEmpty()
\% Returns the size of the queue int size()
\% Inserts v at the end of the queue
enqueue(OBJECT v)

```
if n__me_== " main ":
CQ = \overline{CircularQueue(10)}
    print(CQ.dequeue())
    text = "HELLO W
    text2 = "IKIPEDIA"
    for t in text:
        CQ.enqueue(t)
```

 print (CQ)
 of the queue
 OBJECT dequeue() OBJECT dequeue()
 \% Reads the element at the top of the queue OBJECT top()

None

None
[0]
[1]
[1]
[2]
L3
${ }^{41} 0$
${ }^{[5]}$ [6] W
None <-- Tail
None
None
None
[0] H
2] 31
[4] 0
[6] W <-. Head 71) None <-- Tail

None
(9] None
out txt =
"
(овест
or i in range (6):
out txt += str(CQ.dequeue())

2

Exercise 1

Consider the following code (where s is a list of n elements). What is its complexity?

Note: res is a string!

```
def reverse(s):
    n = len(s)-1
    res = ""
    while n >= 0:
        res = res + s[n]
        n -= 1
    return res
```


Exercise 1

Consider the following code (where s is a list of n elements). What is its complexity?

Note: res is a string!

```
def reverse(s):
    n = len(s)-1
    res = ""
    while n >= 0:
        res = res + s[n]
        n -= 1
    return res
```

Complexity: $\Theta\left(n^{2}\right)$

- n string sums
- Each sum copies all the characters in a new string
strings are immutable!

Exercise 2

Consider the following code (where s is a list of n elements). What is its complexity?

```
def reverse(s):
    res = []
    for c in s:
        res.insert(0, c)
    return "".join(res)
```


Exercise 2

Consider the following code (where s is a list of n elements). What is its complexity?

```
def reverse(s):
    res = []
    for c in s:
        res.insert(0, c)
    return "".join(res)
```

Complexity: $\Theta\left(n^{2}\right)$

- n list inserts
- Each insert moves all characters one position up in the list

Exercise 3

Consider the following code (where s is a list of n elements). What is its complexity?

```
def reverse(s):
    n = len(s)-1
    res = []
    while n >= 0:
        res.append(s[n])
        n -= 1
    return "".join(res)
```


Exercise 3

Consider the following code (where s is a list of n elements). What is its complexity?

```
def reverse(s):
    n = len(s)-1
    res = []
    while n >= 0:
        res.append(s[n])
        n -= 1
    return "".join(res)
```

Complexity: $\Theta(n)$

- n list append
- Each append has an amortized cost of $O(1)$

Note that: "".join(res) has complexity $\mathrm{O}(\mathrm{n})$

Better solution

```
def reverse(s):
    return s[::-1]
```


Exercise 4

Consider the following code (where L is a list of n elements). What is its complexity?

```
def deduplicate(L):
    res=[]
    for item in L:
        if item not in res:
            res.append(item)
    return res
```


Exercise 4

Consider the following code (where L is a list of n elements). What is its complexity?

```
def deduplicate(L):
    res=[]
    for item in L:
        if item not in res:
        res.append(item)
    return res
```

Complexity: $\Theta\left(n^{2}\right)$

- n list append
- n checks whether an element is already present
- Each check costs $O(n)$

Exercise 5

Consider the following code (where L is a list of n elements). What is its complexity?

```
def deduplicate(L):
    res=[]
    present=set()
    for item in L:
    if item not in present:
        res.append(item)
        present.add(item)
    return res
```


Exercise 5

Consider the following code (where L is a list of n elements). What is its complexity?

```
def deduplicate(L):
    res=[]
    present=set()
    for item in L:
        if item not in present:
                res.append(item)
        present.add(item)
    return res
```

 Other possibility - destroy original order
 def deduplicate(L):
return list(set(L))

