
Scientific Programming:
Part B

Lecture 5

Luca Bianco - Academic Year 2020-21
luca.bianco@fmach.it
[credits: thanks to Prof. Alberto Montresor]

Dictionary: ADT

Note: insert replaces the object associated to the key if already present

Possible implementations of a dictionary

Hash table: definitions

Luca Bianco

David Leoni

Massimiliano Luca

Key Function Hash table

0

1

3

60

...

...

116

m-1

...

Hash table: collisions

Luca Bianco

David Leoni

Massimiliano Luca

Key Function Hash table

0

1

3

60

...

...

116

m-1

...
Andrea Passerini

collision

There are
several
ways to deal
with these...

Direct access tables

Example: days of the year

Perfect hash function

Hash functions

we will have to deal with collisions anyway. More on this later...

Hash functions

Hash functions: possible implementations

Hash functions: possible implementations (the code)

ord → ascii
representation of
a character

Replace the b
that stands for
binary!

Hash function implementation

So far, we translated strings into big numbers.

Question for you: how do we convert these big numbers into
values in [0, …, m-1] where m is the size of the hash table?

Hash function implementation

Luca 1,282,761,569 mod 383 Index: 351
David 293,692,926,308 mod 383 Index: 345
Massimiliano 23,948,156,761,864,131,868,341,923,439 mod 383 Index: 208
Andrea 71,942,387,426,657 mod 383 Index: 111
Alberto 18,415,043,350,787,183 mod 383 Index: 221
Alan Turing 39,545,995,566,905,718,680,940,135 mod 383 Index: 314

odd ()

Be careful that:
m = 2^i means to consider the i
least significant bits

Conflicts: separate chaining

Another possible method is to look for another place in the hash
table where we can put the value (open addressing).

add to
the tail
to be O(1)

Separate chaining: complexity

Separate chaining: complexity

all places have the
same probability of
contain one element

alpha is the average
length of each list

Separate chaining: complexity

Hash table: rules for hashing objects

[https://www.asmeurer.com/blog/posts/what-happens-when-you-mess-with-hashing-in-python/]

Hash table: sample code (m = 11)

[[('Andrea', 15)], [('Luca', 27), ('David', 5), ('Alberto', 12)], [], [], [('Alan', 1)], [],
[('Massimiliano', 12)], [], [], [], []]

Luca -> 27
Thomas -> None

[[('Andrea', 15)], [('David', 5), ('Alberto', 12)], [], [], [('Alan', 1)], [],
[('Massimiliano', 12)], [], [], [], []]

SOME CONFLICTS!

pair to deal
with collisions

Hash table: sample code (m = 17)

[[], [], [], [], [], [], [('Alan', 1)], [], [], [('Andrea', 15)], [], [], [('David', 5)],
[('Massimiliano', 12)], [], [('Luca', 27)], [('Alberto', 12)]]
Luca -> 27
Thomas -> None
[[], [], [], [], [], [], [('Alan', 1)], [], [], [('Andrea', 15)], [], [], [('David', 5)],
[('Massimiliano', 12)], [], [], [('Alberto', 12)]]

NO CONFLICTS!

In python...

Python built-in: set

Python built-in: dictionary

Stack: Last in, first out queue

Stack: Last in, first out queue

Stack: Last in, first out queue

Stack: Last in, first out queue

my_func(80)

Stack: Last in, first out queue

my_func(20)
my_func(80)

Stack: Last in, first out queue

my_func(20)
my_func(80)

my_func(5)

Stack: Last in, first out queue

my_func(20)
my_func(80)

my_func(5)
my_func(1)

Stack: Last in, first out queue

my_func(20)
my_func(80)

my_func(5)
my_func(1) 1

Stack: Last in, first out queue

my_func(20)
my_func(80)

my_func(5) 6

Stack: Last in, first out queue

my_func(20)
my_func(80)

26

Stack: Last in, first out queue

my_func(80) 106

Stack: Last in, first out queue

106

Stack: Last in, first out queue

Note: the stack has finite

size!

Stack: implementation

could have used a deque,
linked list,...

Stack: uses

Stack: exercise

Desired output

{{([][])}()} balanced: True
[{()] balanced: False
{[(())][{[]}]} balanced: True
{[(())][{[]}] balanced: False

Ideas on how to implement par_checker using
a Stack?

Simplifying assumption: only characters allowed
in input are ”{ [()] }”

Possible solution:
Loop through the input string and...

● push opening parenthesis to stack
● when analyzing a closing parenthesis,

pop one element from the stack and
compare: if matching keep going, else
return False

Stack: exercise

Desired output

{{([][])}()} balanced: True
[{()] balanced: False
{[(())][{[]}]} balanced: True
{[(())][{[]}] balanced: False

Queue: First in, first out queue (FIFO)

Queue: example

Queue: uses and implementation

Queue: as a list (with deque)

Makes use of efficient deque object that provides ~ O(1) push/pop
https://docs.python.org/3.7/library/collections.html#collections.deque

Not very interesting implementation.

Just pay attention to the case when
the Queue is empty in top and
dequeue

Queue as a circular list

 tail

 tail

 tail

 tail

Queue as a circular list: example

Queue as a circular list: example

Queue as a circular list: example

Queue as a circular list: example

Queue as a circular list: example

Queue as a circular list: example

Queue as a circular list: example

skipping a few
typing steps...

Queue as a circular list: example

skipping a few
typing/reading
 steps...

Queue as a circular list: exercise

Implement the CircularQueue data structure

(without going to the next slide…)

Queue as a circular list: the code

Exercise 1

Consider the following code (where s is a list of n
elements). What is its complexity?
Note: res is a string!

Exercise 1

Consider the following code (where s is a list of n
elements). What is its complexity?
Note: res is a string!

strings are
immutable!

Exercise 2

Consider the following code (where s is a list of n
elements). What is its complexity?

Exercise 2

Consider the following code (where s is a list of n
elements). What is its complexity?

Exercise 3

Consider the following code (where s is a list of n
elements). What is its complexity?

Exercise 3

Consider the following code (where s is a list of n
elements). What is its complexity?

Note that: “”.join(res) has
complexity O(n)

Exercise 4

Consider the following code (where L is a list of n
elements). What is its complexity?

Exercise 4

Consider the following code (where L is a list of n
elements). What is its complexity?

Exercise 5

Consider the following code (where L is a list of n
elements). What is its complexity?

Exercise 5

Consider the following code (where L is a list of n
elements). What is its complexity?

