Scientific Programming: Part B

Trees

Luca Bianco - Academic Year 2020-21
luca.bianco@fmach.it
[credits: thanks to Prof. Alberto Montresor]

Tree: examples

Tree: examples

Tree: examples

Tree: examples

Tree: examples

<html>
<head>
<meta http-equiv="Content-Type" content="text/html" /> <title>simple</title>
</head>
<body>
<h1>A simple web page</h1>

List item one
List item two

<h2>Luther CS <h2>
</body>
</html>

Definitions

Trees are data structures composed of two elements: nodes and edges.

Nodes represent things and edges represent relationships (typically non-symmetric) among two nodes.

Tree

A tree consists of a set of nodes and a set of edges that connect pairs of nodes, with the following properties:

- One node of the tree is designated as the root node
- Every node n, except the root node, is connected by an edge from exactly one other node p
- A unique path traverses from the root to each node
- The tree is connected

Definitions

Facts

- One node called the root is the top level of the tree and is connected to one or more other nodes;
- If the root is connected to another node by means of one edge, then it is said to be the parent of the node (and that node is the child of the root);
- Any node can be parent of one or more other nodes, the only important thing is that all nodes have only one parent;
- The root is the only exception as it does not have any parent. Some nodes do not have children and they are called leaves;

Recursive definition

Tree

A tree is either empty or consists of a root and zero or more subtrees, each of which is also a tree. The root of each subtree is connected to the root of the parent tree by an edge.

Terminology

- A is the tree root
- B, C are roots of their subtrees
- D, E are siblings
- D, E are children of B
- B is the parent of D, E
- Purple nodes are leaves
- The other nodes are internal nodes

Terminology - 2

Depth of a node

The length of the simple path from the root to the node (measured in number of edges)

Level

The set of nodes having the same depth

Height of the tree

The maximum depth of all its leaves

Level

Height of this tree $=3$

Binary tree

Binary tree

A binary tree is a tree data structure in which each node has at most two children, which are referred to as the left child and the right child.

Note: Two trees T and U having the same nodes, the same children for each node and the same root, are said to be different if a node u is a left child of a node v in T and a right child of the same node in U.

Three distinct trees.
Note: T1 is not graphically very well represented.

Binary tree: Node

When implementing a tree we can define a node object and then a tree object that stores nodes.

We will use the more compact way which is to use the recursive definition of a tree.

- parent: reference to the parent node
- left: reference to the left child
- right: reference to the left child

Binary tree: ADT

Tree

\% Build a new node, initially containing v, with no children or parent
Tree (OBJECT v)
\% Read the value stored in this node
object getValue()
\% Write the value stored in this node
setValue(OBJECT v)
\% Return the parent, or none if this node is the root
Tree getParent()
\% Return the left (right) child of this node; return none if absent
Tree getLeft()
Tree getRight()
\% Insert the subtree rooted in t as left (right) child of this node insertLeft(Tree t)
insertRight(Tree t)
\% Delete the subtree rooted on the left (right) child of this node deleteLeft()
deleteRight()

Binary tree: the code

```
class BinaryTree:
    #the initializer, set the data
    #all pointers empty
    def __init__(self, value):
        self.__data = value
        self._right = None
        self.-left = None
        self.__parent = None
    #returns the value
    def getValue(self):
    return self.
        data
    #sets the value
    def setValue(self, newval):
        self. data = newval
    #gets the parent
    def getParent(self):
        return self. parent
    #sets the parent
    #NOTE: needed because we are using
    #private attributes
    def setParent(self, tree):
        self.__parent = tree
```

\#set the right child
def insertRight(self, tree):
if self. right $==$ None:
self.__right $=$ tree
tree. $\overline{s e} t$ Parent (self)
\#sets the left child
def insertLeft(self, tree):
if self. _left $==$ None:
self. left = tree
tree. $\overline{s e} t$ Parent(self)
\#deletes the right subtree
def deleteRight(self):
self. right $=$ None
\#deletes the left subtree
def deleteLeft(self):
self. left $=$ None
\#gets the right child
def getRight(self):
return self.__right
\#gets the left child
def getLeft(self):
return self. left

Tree parent Tree(OBJECT v)
\% Read the value stored in this node OBJECT getValue()
\% Write the value stored in this node
setValue (OBJECT v)
\% Return the parent, or none if this node is the root
Tree getParent()
\% Return the left (right) child of this node; return none if absent Tree getLeft()
Tree getRight()
\% Insert the subtree rooted in t as left (right) child of this node insertLeft(TrEE t)
insertRight(TREE t)
\% Delete the subtree rooted on the left (right) child of this node deleteLeft()
deleteRight()

Exercise: recursive deleteRight and deleteLeft or just delete

A sample tree...

```
if name_== " main ":
    BT = BinaryTree("Root")
    bt1 = BinaryTree(1)
    bt2 = BinaryTree(2)
    bt3 = BinaryTree(3)
    bt4 = BinaryTree(4)
    bt5 = BinaryTree(5
    bt6 = BinaryTree(6)
    bt5a = BinaryTree("5a")
    bt5b = BinaryTree("5b")
    bt5c = BinaryTree("5c")
```

BT.insertLeft(bt1)
BT.insertRight(bt2) bt2.insertLeft (bt3) bt3.insertLeft(bt4) bt3.insertRight(bt5) bt2.insertRight (bt6) bt1.insertRight(bt5b) btl.insertLeft(bt5a) bt5b.insertRight(bt5c)

A sample tree...

```
if name == " main ":
    BT = BinaryTree("Root")
    bt1 = BinaryTree(1)
    bt2 = BinaryTree(2)
    bt3 = BinaryTree(3)
    bt4 = BinaryTree(4)
    bt5 = BinaryTree(5)
    bt6 = BinaryTree(6)
    bt5a = BinaryTree("5a")
    bt5b = BinaryTree("5b")
    bt5c = BinaryTree("5c")
    BT.insertLeft(bt1)
    BT.insertRight(bt2)
    bt2.insertLeft(bt3)
    bt3.insertLeft(bt4
    bt3.insertRight(bt5)
    bt2.insertRight(bt6)
    btl.insertRight(bt5b)
    bt1.insertLeft(bt5a)
    bt5b.insertRight(bt5c)
    print("\nDelete right branch of 2")
    bt2.deleteRight()
```


A sample tree...

```
if name == " main "
```

 BT = BinaryTree("Root")
 bt1 = BinaryTree(1)
 bt2 \(=\) BinaryTree(2)
 bt3 \(=\) BinaryTree(3)
 bt4 \(=\) BinaryTree (4)
 bt5 \(=\) BinaryTree(5)
 bt6 = BinaryTree(6)
 bt5a = BinaryTree("5a")
 bt5b = BinaryTree("5b")
 bt5c = BinaryTree("5c")

BT.insertLeft(bt1)
BT.insertRight(bt2)
bt2.insertLeft(bt3)
bt3.insertLeft(bt4)
bt3.insertRight(bt5)
bt2.insertRight(bt6)
btl.insertRight(bt5b)
bt1.insertLeft(bt5a)
bt5b.insertRight(bt5c)
print("\nDelete right branch of 2")
bt2.deleteRight()

A sample tree...

```
if n__nme_== " main_":
    BT = \overline{BinaryTree("Root")}
    bt1 = BinaryTree(1)
    bt2 = BinaryTree(2)
    bt3 = BinaryTree(3)
    bt4 = BinaryTree(4)
    bt5 = BinaryTree(5)
    bt6 = BinaryTree(6)
    bt5a = BinaryTree("5a")
    bt5b = BinaryTree("5b")
    bt5c = BinaryTree("5c")
```

BT.insertLeft(bt1)
BT.insertRight(bt2) bt2.insertLeft(bt3) bt3.insertLeft(bt4) bt3.insertRight(bt5) bt2.insertRight(bt6) bt1.insertRight(bt5b) bt1.insertLeft(bt5a) bt5b.insertRight(bt5c)

Exercise. write a print function that gets the root node and prints the tree:

```
Root (r)-> 2
Root (l)-> 1
    1 (r)-> 5b
    1 (l)-> 5a
        5b (r) -> 5c
    2 (r)-> 6
    2 (l)-> 
    3(r) -> 5
    3(l)-> 4
```

A sample tree...
Exercise. write a print function that gets the root node and prints the tree:
\qquad

``` \(\rightarrow \quad 1(r)->5 b\)
```

 Root (r)-> 2
    ```
                                    Root (r)-> 2
                                    Root (l)-> 1
                                    Root (l)-> 1
                                    Tabs depend
                                    Tabs depend
                                    on depth
                                    on depth
                    1(r)-> 5a (r)-> 5c
                    1(r)-> 5a (r)-> 5c
                        2(r)-> 6
                        2(r)-> 6
        2 (l)-> 3
        2 (l)-> 3
                                    3(r)-> 5
                                    3(r)-> 5
                                    3(l) -> 4
```

 3(l) -> 4
    ```

```

 printree(root):
    ```
    printree(root):
    cur = root
    cur = root
    #each element is a node and a depth
    #each element is a node and a depth
    #depth is used to format prints (with tabs)
    #depth is used to format prints (with tabs)
    nodes = [(cur,0)]
    nodes = [(cur,0)]
    tabs = "
    tabs = "
    lev = 0
    lev = 0
    while len(nodes) >0:
    while len(nodes) >0:
        cur, lev = nodes.pop(-1)
        cur, lev = nodes.pop(-1)
        if cur.getRight() != None:
        if cur.getRight() != None:
            print ("{}{} (r) -> {}".format("\t"*lev,
            print ("{}{} (r) -> {}".format("\t"*lev,
                        cur.getValue(),
                        cur.getValue(),
                            cur.getRight().getValue()))
                            cur.getRight().getValue()))
            nodes.append((cur.getRight(), lev+1))
            nodes.append((cur.getRight(), lev+1))
            if cur.getLeft() != None:
            if cur.getLeft() != None:
                print ("{}{} (l) -> {}".format("\t"*lev,
                print ("{}{} (l) -> {}".format("\t"*lev,
                        cur.getValue(),
                        cur.getValue(),
                        cur.getLeft().getValue()))
                        cur.getLeft().getValue()))
            nodes.append((cur.getLeft(), lev+1))
```

 nodes.append((cur.getLeft(), lev+1))
    ```

\section*{A sample tree...}
```

```
```

def printTree(root):

```
```

```
def printTree(root):
```

```
```

def printTree(root):
cur = root
cur = root
cur = root
\#each element is a node and a depth
\#each element is a node and a depth
\#each element is a node and a depth
\#depth is used to format prints (with tabs)
\#depth is used to format prints (with tabs)
\#depth is used to format prints (with tabs)
nodes = [(cur,0)]
nodes = [(cur,0)]
nodes = [(cur,0)]
tabs = "
tabs = "
tabs = "
lev = 0
lev = 0
lev = 0
while len(nodes) >0:
while len(nodes) >0:
while len(nodes) >0:
cur, lev = nodes.pop(-1)
cur, lev = nodes.pop(-1)
cur, lev = nodes.pop(-1)
if cur.getRight() != None:
if cur.getRight() != None:
if cur.getRight() != None:
print ("{}{} (r) -> {}".format("\t"*lev,
print ("{}{} (r) -> {}".format("\t"*lev,
print ("{}{} (r) -> {}".format("\t"*lev,
cur.getValue(),
cur.getValue(),
cur.getValue(),
cur.getRight().getValue()))
cur.getRight().getValue()))
cur.getRight().getValue()))
nodes.append((cur.getRight(), lev+1))
nodes.append((cur.getRight(), lev+1))
nodes.append((cur.getRight(), lev+1))
if cur.getLeft() != None:
if cur.getLeft() != None:
if cur.getLeft() != None:
print ("{}{} (l)-> {}".format("\t"*lev,
print ("{}{} (l)-> {}".format("\t"*lev,
print ("{}{} (l)-> {}".format("\t"*lev,
cur.getValue(),
cur.getValue(),
cur.getValue(),
cur.getLeft().getValue()))
cur.getLeft().getValue()))
cur.getLeft().getValue()))
nodes.append((cur.getLeft(), lev+1))

```
            nodes.append((cur.getLeft(), lev+1))
```

 nodes.append((cur.getLeft(), lev+1))
    ```
```

 <=
    ```
```

```
    <=
```

```
```

 <=
    ```
```


OUTPUT

Root (r)-> 2
Root (I)-> 1

$$
\begin{aligned}
& 1(\mathrm{r})->5 b \\
& 1(\mathrm{l})->5 \mathrm{~b} \\
& 5 \mathrm{~b}(\mathrm{r})->5 \mathrm{c} \\
& 2(\mathrm{l})->3 \\
& \quad 3(\mathrm{r})->5 \\
& 3(\mathrm{l})->4 \\
& \quad 5(\mathrm{l})->\text { child of } 5
\end{aligned}
$$

Tree traversals

Tree traversal / search
A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

To store all unfinished calls to DFS(node)

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another

Recursively

1. visit Root
2. DFS(left)
3. DFS(right)

Preorder:

Root
visit(Root) \rightarrow print("Root") call DFS(Root.getLeft()) which is $\operatorname{DFS}(1) \rightarrow \operatorname{visit}(1)$ DFS("1".getLeft()) DFS("1".getRight()

Tree traversals

Tree traversal / search
A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Recursively

1. visit Root
2. DFS(left)
3. DFS(right)

Preorder:
 Stack: (5c right of 5b!)

Root
1

1
Root

Tree traversals

Tree traversal / search
A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Recursively

1. visit Root
2. DFS(left)
3. DFS(right)

Preorder: Stack: (5c right of 5b!)

Root
1
5a

5a
1
Root

Tree traversals

Tree traversal / search
A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Recursively

1. visit Root
2. DFS(left)
3. DFS(right)

Preorder: Stack: (5cright of 5b!)

Root

1
5a

1
Root

Tree traversals

Tree traversal / search
A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Recursively

1. visit Root
2. DFS(left)
3. DFS(right)

Preorder: Stack: (5cright of 5b!)

Root

1
5a
5b

5b

1
Root

Tree traversals

Tree traversal / search
A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Recursively

1. visit Root
2. DFS(left)
3. DFS(right)

Preorder: Stack: (5c right of 5b!)

Root

1
5a
5b
5c

5c
5b
1
Root

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Preorder: Stack: (5cright of 5b!)

Root
1
5a 5b
1
Root

5b
5c

Tree traversals

Tree traversal / search
A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants (pre/in/post order)
- Requi res a stack

Recursively

1. visit Root
2. DFS(left)
3. DFS(right)

Preorder:

Root
1
5a
5b
5c

Stack: (5c right of 5b!)
1
Root

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Recursively

1. visit Root
2. DFS(left)
3. DFS(right)

Preorder:

Root
1
5a
5b
5c

Stack: (5c right of 5b!)
Root

Tree traversals

Tree traversal / search
A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants (pre/in/post order)
- Requi res a stack

Recursively

1. visit Root
2. DFS(left)
3. DFS(right)

Preorder:

Root

1
5a
5b
5c
2

Stack: (5c right of 5b!)
2
Root

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants (pre/in/post order)
- Requi res a stack

Recursively

1. visit Root
2. DFS(left)
3. DFS(right)

Preorder: Stack: (5c right of 5b!)
Root
3
2
Root
5a

5b
5c
2
3

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Recursively

1. visit Root
2. DFS(left)
3. DFS(right)

Preorder: \quad Stack: (5c right of 5 b !)
Root
4
3
1
5a
5b
5c
2
3
4

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants (pre/in/post order)
- Requi res a stack

Recursively

1. visit Root
2. DFS(left)
3. DFS(right)

Preorder: Stack: (5c right of 5b!)
Root
3
2
Root
5a

5b

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Recursively

1. visit Root
2. DFS(left)
3. DFS(right)

Preorder: Stack: (5c right of 5b!)

Root

5
3
5a
5b
5c
2
3
4
5

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants (pre/in/post order)
- Requi res a stack

Recursively

1. visit Root
2. DFS(left)
3. DFS(right)

Preorder: Stack: (5cright of 5b!)

Root
3
1
5a
2
5b
5c
2
3
4
5

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants (pre/in/post order)
- Requi res a stack

Recursively

1. visit Root
2. DFS(left)
3. DFS(right)

Preorder: Stack: (5cright of 5b!)

Root

1
5a
5b
5c
2
3
4
5

2

Root

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants (pre/in/post order)
- Requi res a stack

Recursively

1. visit Root
2. DFS(left)
3. DFS(right)

Preorder: Stack: (5c right of 5b!)

Root

1
5a
6
2
Root

5c
2
3
4
5
6

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants (pre/in/post order)
- Requi res a stack

Recursively

1. visit Root
2. DFS(left)
3. DFS(right)

Preorder: Stack: (5cright of 5b!)

Root

1
5a
5b
5c
2
3
4

5

Root

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants (pre/in/post order)
- Requi res a stack

Recursively

1. visit Root
2. DFS(left)
3. DFS(right)

Preorder:

Root
1
5a
5b
5c
2
3
4
5

Stack: (5c right of 5b!) Root

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Recursively

1. visit Root
2. DFS(left)
3. DFS(right)

Preorder:

Root
1
5a empty! Done

Tree traversals

Tree traversal / search
A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Recursively

1. DFS(left)
2. visit Root
3. DFS(right)

Stack: (5c right of 5b!) Root

Inorder:

Tree traversals

Tree traversal / search
A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Recursively

1. DFS(left)
2. visit Root
3. DFS(right)

Stack: (5c right of 5b!)
1
Root

Inorder:

Tree traversals

Tree traversal / search
A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Inorder:
 Stack: (5c right of 5b!)

5a
5a
1
Root

Tree traversals

Tree traversal / search
A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Inorder: Stack: (5c right of 5b!)
5a
1
Root

Tree traversals

Tree traversal / search
A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Recursively

1. DFS(left)
2. visit Root
3. DFS(right)

Inorder: \quad Stack: (5c right of 5b!)

5a
1

\square Inorder:

Tree traversals

Tree traversal / search
A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Recursively

1. DFS(left)
2. visit Root
3. DFS(right)

Inorder:

$5 a$
1


```
Inorder:
5a
1
Stack: (5c right of 5b!)
```


5b

```
1
Root
```


Tree traversals

Tree traversal / search
A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Recursively

1. DFS(left)
2. visit Root
3. DFS(right)

Inorder:

5a
1
5b

Tree traversals

Tree traversal / search
A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Recursively

1. DFS(left)
2. visit Root
3. DFS(right)

Inorder:

5a
1
5b
5c

Tree traversals

Tree traversal / search
A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Recursively

1. DFS(left)
2. visit Root
3. DFS(right)

Inorder:

5a
1
5b

Stack: (5c right of 5b!)

5b

1
Root

5c

Tree traversals

Tree traversal / search
A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Recursively

1. DFS(left)
2. visit Root
3. DFS(right)

Inorder:

5a
1
5b

Stack: (5c right of 5b!)

1

Root

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Recursively
 1. DFS(left)
 2. visit Root
 3. DFS(right)
 Inorder:
 5a
 1
 5b
 5c

Stack: (5c right of 5b!) Root

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Recursively

1. DFS(left)
2. visit Root
3. DFS(right)

Inorder:

5a
1
5b
5c
Root

Stack: (5c right of 5b!) Root

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Tree traversals

Tree traversal / search
A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Recursively

1. DFS(left)
2. visit Root
3. DFS(right)

Inorder:

5a
1
5b

Stack: (5c right of 5b!)
3
2
Root

5c
Root

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

 Stack: (5c right of 5b!)
 5a
 1
 5b
 5c
 Root}

Recursively

1. DFS(left)
2. visit Root
3. DFS(right)

Inorder:

Inorder:

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Inorder:
 Stack: (5c right of 5b!)

5a
1
5b 3

2
Root

5c
Root

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Inorder:
 Stack: (5c right of 5b!)

5a
1
5b
3
2
Root

5c
Root

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Recursively

1. DFS(left)
2. visit Root
3. DFS(right)

Inorder:

5a
1
5b
5c
Root

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack


```
Inorder:
5a
1
5b
5c
Root
4
3
5
```


Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

 5a
 1
 5b
 5c
 Stack: (5c right of 5b!)
 2
 Root
 \section*{\section*{Inorder:}
 \section*{\section*{Inorder:}
 c}

Recursively

1. DFS(left)
2. visit Root
3. DFS(right)

Root

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack


```
Inorder:
5a
1
5b
5c
Root
```


Recursively

1. DFS(left)
2. visit Root
3. DFS(right)
3
5

Inorder:

5a
1
5b
5c
Root

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

 Stack: (5c right of 5b!)
 5a
 1
 5b
 5c
 Root}

Recursively

1. DFS(left)
2. visit Root
3. DFS(right)

Inorder:

Inorder:

3
5
2
6

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Recursively

1. DFS(left)
2. visit Root
3. DFS(right)

Inorder:

5a
1

5b
5c
Root
4
3
5
2
6
b
c

$$
3
$$

$$
5
$$

$$
\underline{2}
$$

Stack: (5c right of 5b!)
2
Root

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants
(pre/in/post order)
- Requi res a stack

Recursively

1. DFS(left)
2. visit Root
3. DFS(right)

Inorder:
 5a

1
5b
5c
Root
4
3
5
2

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants (pre/in/post order)
- Requi res a stack

Recursively

1. DFS(left)
2. visit Root
3. DFS(right)

Inorder:
5a
1
5b
5c
Root
4
3
5
2
6

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another

Recursively

1. DFS(left)
2. DFS(right)
3. visit Root

Postorder:
 Stack: Exercise!

5a
5 c (right of 5 b)
5b
1
4
5
3
6
2
Root

DFS: the code

Notes:

- visit means "print"
- it is a method of the class BinaryTree
def DFS(node, kind = "preorder"):
if node != None:
if kind == "preorder":
print("\{\}".format(node.getValue()))
DFS(node.getLeft(), kind = kind)
if kind == "inorder":
print("\{\}". format(node.getValue()))
DFS(node.getRight(), kind = kind)
if kind == "postorder":
print("\{\}".format(node.getValue()))

Inorder: Postorder:
 5a
 5a
 1
 5c
 5b
 5b
 5c
 1
 Root
 4
 4
 5
 2
 6
 Root

Root
1
5a
5b
5c
2

Root

3
4
5
$6 \quad 6$

Tree traversals

Tree traversal / search
A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

- Each subtree of the tree is visited, one after another
- Three variants (pre/in/post order)
- Requi res a stack

Breadth-First Search (BFS)

- Each level of the tree is visited, one after the other
- Starts from the root
- Requires a queue

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Breadth-First Search (BFS)

- Each level of the tree is visited, one after the other
- Starts from the root
- Requires a queue

0 . Add root to the queue Q

Recursively

1. get node from Q
2. visit the node
3. add all children to Q

Visit order

Queue
Root

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Breadth-First Search (BFS)

- Each level of the tree is visited, one after the other
- Starts from the root
- Requires a queue
O. Add root to the queue Q

Recursively

1. get node from Q
2. visit the node
3. add all children to Q

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Breadth-First Search (BFS)

- Each level of the tree is visited, one after the other
- Starts from the root
- Requires a queue

0 . Add root to the queue Q

Recursively

1. get node from Q
2. visit the node
3. add all children to Q

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Breadth-First Search (BFS)

- Each level of the tree is visited, one after the other
- Starts from the root
- Requires a queue

0 . Add root to the queue Q

Recursively

1. get node from Q
2. visit the node
3. add all children to Q

Visit order

Root
1
2

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Breadth-First Search (BFS)

- Each level of the tree is visited, one after the other
- Starts from the root
- Requires a queue

0 . Add root to the queue Q

Recursively

1. get node from Q
2. visit the node
3. add all children to Q

Visit order

Root
1
2
$5 a$

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Breadth-First Search (BFS)

- Each level of the tree is visited, one after the other
- Starts from the root
- Requires a queue

0 . Add root to the queue Q

Recursively

1. get node from Q
2. visit the node
3. add all children to Q

Visit order
 Root

1
2
5a
5b

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Breadth-First Search (BFS)

- Each level of the tree is visited, one after the other
- Starts from the root
- Requires a queue

Visit order
 Root

1
2
5a
5b
3

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Breadth-First Search (BFS)

- Each level of the tree is visited, one after the other
- Starts from the root
- Requires a queue

Visit order
 Root

1
2
5a
5b
3
6

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Breadth-First Search (BFS)

- Each level of the tree is visited, one after the other
- Starts from the root
- Requires a queue

0 . Add root to the queue Q

Recursively

1. get node from Q
2. visit the node
3. add all children to Q

Visit order Queue
 Root
 1
 2
 5a
 5b
 3
 6
 $5 c$

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Breadth-First Search (BFS)

- Each level of the tree is visited, one after the other
- Starts from the root
- Requires a queue

0 . Add root to the queue Q

Recursively

1. get node from Q
2. visit the node
3. add all children to Q

Visit order
 Root

1
2
5a
5b
3
6
5c
4

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Breadth-First Search (BFS)

- Each level of the tree is visited, one after the other
- Starts from the root
- Requires a queue

0 . Add root to the queue Q

Recursively

1. get node from Q
2. visit the node
3. add all children to Q

```
Visit order
Root
1
2
5a
5b
3
6
5c
4
5
```


Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Breadth-First Search (BFS)

- Each level of the tree is visited, one after the other
- Starts from the root
- Requires a queue

| Visit order | Level |
| :--- | :--- |
| Root | 0 |
| 1 | 1 |
| 2 | 1 |
| 5 a | 2 |
| 5 b | 2 |
| 3 | 2 |
| 6 | 2 |
| 5 c | 3 |
| 4 | 3 |
| 5 | 3 |

Tree traversals: BFS

```
from collections import deque
def BFS(node):
    Q = deque()
    if node != None:
        Q.append(node)
    while len(Q) > 0:
        curNode = Q.popleft()
        if curNode != None:
            print("{}".format(curNode.getValue()))
            Q.append(curNode.getLeft())
            Q.append(curNode.getRight())
```


BFS visit:

Root

1

Algorithm 2
O. Add root to the queue Q 5a
Recursively 3

1. get node from Q 6
2. visit the node 5c
3. add all children to Q 5

Tree traversals: complexity

The cost of a visit of a tree containing n nodes is $\Theta(n)$, because
 each node is visited exactly once.

Generic trees

Generic Trees are like binary trees, but each node can have more than 2 children. One possible implementation is that each node (that is a subtree in itself) has a value, a link to its parent and a list of children.

Another implementation is that each node has a value, a link to its parent, a link to its next sibling and a link to its first child.

Generic trees

Tree
\% Build a new node, initially containing v, with no children or parent
Tree(OBJECT v)
\% Read the value stored in nodes
object getValue()

\% Write the value stored in nodes
setValue (OBJECT v)
\% Returns the parent, or None if this node is root
Tree getParent()
\% Returns the first child, or None if this node is leaf
Tree leftmostChild()
\% Returns the next sibling, or None if there is none
Tree rightSibling()

Exercise!

\% Insert the subtree t as first child of this node insertChild(Tree t)
\% Insert the subtree t as next sibling of this node insertSibling(Tree t)
\% Destroy the subtree rooted in the first child deleteChild()
\% Destroy the subtree rooted in the next sibling deleteSibling()

Exercise

The visit order of a binary tree containing 9 nodes are the following:

- A, E, B, F, G, C, D, I, H (pre-order) Root-Left-Right
- B, G, C, F, E, H, I, D, A (post-order) Left-Right-Root
- B, E, G, F, C, A, D, H, I (in-order) Left-Root-Right

What is the corresponding binary tree? Explain.

Exercise

The visit order of a binary tree containing 9 nodes are the following:

- A, E, B, F, G, C, D, I, H (pre-order)
- B, G, C, F, E, H, I, D, A (post-order)
- B, E, G, F, C, A, D, H, I (in-order)

What is the corresponding binary tree? Explain.

| Preorder visit | Postorder visit | Inorder visit |
| :--- | :--- | :--- |
| A | B | B |
| E | G | E |
| B | C | G |
| F | F | F |
| G | E | C |
| C | H | A |
| D | I | D |
| I | D | H |
| H | A | I |

where I is on the right of D and H is on the left of I

Exercises

- The width of a binary tree is the largest number of nodes that belong to the same level. Write a function that given a tree t, returns the width of t.
- The minimal height of a binary tree t is the minimal distance between node v and any of the leaf in its subtree. Write a function that given a tree t, returns the minimal height of t.
- Write a function that given a binary tree t and an integer k, returns the number of nodes at level k

Width: 3

Minimal height: 2
$\mathrm{k}=2 \rightarrow$ output: 3

Exercise: width

def getWidth(tree):
"""gets the width of the tree""
if tree == None:
return 0
level $=$ [tree]
res = 1
while len(level) > 0:
print("Level: \{\}".format([x.getValue() for x in level]))
tmp $=$ []
for t in level:
$r=t . g e t R i g h t()$
l $=$ t.getLeft ()
if r ! $=$ None:
tmp. append (r)
if 1 != None:
tmp. append(l)
res $=\max ($ res, len $(\mathrm{tmp}))$
level = tmp
return res
print("Width of tree: \{\}".format(getWidth(exer)))

Level: ['A']
Level: ['D', 'E']
Level: ['I', 'F', 'B']
Level: ['H', 'C', 'G']
Width of tree: 3
similar to BFS but we need to explicitly store the level...

Exercise: count the nodes of each (sub)tree

How many nodes does a (sub)tree have?
IDEA: similar to DFS postorder-visit (summing the counts). Remember to add 1 for the root.

Exercise: count the nodes of each (sub)tree

How many nodes does a (sub)tree have?
IDEA: similar to DFS postorder-visit (summing the counts). Remember to add 1 for the root.

```
    """counts the nodes of each (sub)tree rooted at 'tree'"""
    if tree == None:
        return 0
    else:
        l = count_nodes(tree.getLeft())
        r = count_nodes(tree.getRight())
        return l + r + 1 #the count of the right, that of the left + the root
```

def count_nodes(tree):

The tree rooted at 'A' has 9 nodes The tree rooted at ' E ' has 5 nodes The tree rooted at 'D' has 3 nodes The tree rooted at 'B' has 1 nodes The tree rooted at ' F ' has 3 nodes The tree rooted at 'l' has 2 nodes The tree rooted at ' G ' has 1 nodes The tree rooted at ' C ' has 1 nodes The tree rooted at ' H ' has 1 nodes

