Scientific Programming:
Part B

Trees

Luca Bianco - Academic Year 2020-21
luca.bianco@fmach.it
[credits: thanks to Prof. Alberto Montresor]

Tree: examples

e S e

Tree: examples

SO &

Tree: examples

D
I CHRCRCHRCS) Cor) (o)
SR R RCHRCIRCORCIICHECIRCIRCORCIIED

Tree: examples

EADelicious]

L

COX4 Delicious EAGoldenbel

.

Kids®rRed

Goldenbel

Tree: examples

<html>
<head>
<meta http-equiv="Content-Type" content="text/html" />
<title>simple</title>
</head>
<body>
<h1>A simple web page</hl>

List item one</1i>
List item two</1li>

<h2>Luther CS <h2>
</body>
</html>

Definitions
Cremt D

CioCu> C&o
Tree

A tree consists of a set of nodes and a set of edges that connect pairs

Trees are data structures B e g e
of nodes, with the following properties:

composed of two elements: . ,
nodes and edges @ One node of the tree is designated as the root node

e Every node n, except the root node, is connected by an edge
Nodes represent things and
edges represent relationships
(typically non-symmetric) among @ A unique path traverses from the root to each node
two nodes.

from exactly one other node p

@ The tree is connected

Definitions

<D
<y (o) (oig)
(Bt) (OBl (Bl (Rt 3 Gt by 17 Gomttl
Facte (=0 Qoo (e) (o) (Gotih (8D () (o) (i)

e One node called the root is the top level of the tree and is connected to one or more other nodes;

e Ifthe root is connected to another node by means of one edge, then it is said to be the parent of the
node (and that node is the child of the root);

e Any node can be parent of one or more other nodes, the only important thing is that all nodes have
only one parent;

e Theroot is the only exception as it does not have any parent. Some nodes do not have children
and they are called leaves;

Recursive definition

Tree

A tree is either empty or consists of a root and zero or more subtrees,
each of which is also a tree. The root of each subtree is connected
to the root of the parent tree by an edge.

Terminology

e A is the tree root @ D, FE are children e Purple nodes are
e B,C are roots of of B leaves
their subtrees e B is the parent of e The other nodes

e D, FE are siblings D,E are internal nodes

Terminology - 2

~ Depth of a node

The length of the simple path
from the root to the no-
de (measured in number of

edges)
\

~ Level \
The set of nodes having the
same depth

\. J

-~ Height of the tree

The maximum depth of all its

leaves
k:

Height of this tree = 3

Binary tree

A -

- Binary tree

A binary tree is a tree data structure in which each node has at
most two children, which are referred to as the left child and the
right child.

Three distinct trees.

Note: T1is not graphically

very well represented.

Note: Two trees T and U having the same nodes, the same children for
each node and the same root, are said to be different if a node u is a left
child of a node v in T and a right child of the same node in U.

T T Ty Level

Binary tree: Node

@ parenl: reference to the parent node
@ left: reference to the left child

@ right: reference to the left child

When implementing a tree we can define
a node object and then a tree object
that stores nodes.

We will use the more compact way which
is to use the recursive definition of a
tree.

Binary tree: ADT

TREE

% Build a new node, initially containing v, with no children or
parent
Tree(OBJECT v)

% Read the value stored in this node
OBJECT getValue()

% Write the value stored in this node
setValue(OBJECT v)

% Return the parent, or none if this node is the root

TREE getParent()

% Return the left (right) child of this node; return none if absent
TREE getLeft()

TREE getRight()

% Insert the subtree rooted in ¢ as left (right) child of this node
insertLeft(TREE t)

insertRight(TREE t)

% Delete the subtree rooted on the left (right) child of this node

deleteleft()
deleteRight()

Binary tree: the code

class BinaryTree:
#the initializer, set the data
#all pointers empty
def init (self, value):
self. data = value
self. right = None
self. left = None
self. parent = None

#returns the value
def getValue(self):
return self. data

#sets the value
def setValue(self, newval):
self. data = newval

#gets the parent
def getParent(self):
return self. parent

#sets the parent
#NOTE: needed because we are using
#private attributes
def setParent(self, tree):
self. parent = tree

#gets the right child
def getRight(self):
return self. right

#gets the left child
def getlLeft(self):
return self. left

#set the right child
def insertRight(self, tree):
if self. right == None:
self. right = tree
tree.setParent(self)

#sets the left child
def insertlLeft(self, tree):
if self. left == None:
self. left = tree
tree.setParent(self)
#deletes the right subtree
def deleteRight(self):
self. right = None
#deletes the left subtree
def deletelLeft(self):
self. left = None

(P)
VARG

fr)
ulr)

TREE

% Build a new node, initially containing v, with no children or
parent

Tree(OBJECT v)

% Read the value stored in this node
OBJECT getValue()

% Write the value stored in this node
setValue(OBJECT v)

% Return the parent, or none if this node is the root
TREE getParent()

% Return the left (right) child of this node; return none if absent
TREE getLeft()

TREE getRight()

% Insert the subtree rooted in ¢ as left (right) child of this node
insertLeft(TREE t)

insertRight(TREE t)

% Delete the subtree rooted on the left (right) child of this node
deleteLeft()

deleteRight()

Exercise: recursive deleteRight and deleteleft or just delete

A sample tree...

if npame == " main ":
BT = BinaryTree("Root")

btl = BinaryTree(1)
bt2 = BinaryTree(2)
bt3 = BinaryTree(3)
bt4 = BinaryTree(4)
bt5 = BinaryTree(5)
bt6é = BinaryTree(6)
bt5a = BinaryTree("5a")
bt5b = BinaryTree("5b")
bt5c = BinaryTree("5c")

BT.insertlLeft(btl)
BT.insertRight(bt2)
bt2.insertLeft(bt3)
bt3.insertLeft(bt4)
bt3.insertRight(bt5)
bt2.insertRight(bt6)
btl.insertRight(bt5b)
btl.insertLeft(bt5a)
bt5b.insertRight(bt5c)

A sample tree...

if _npame_ == " main_ ":
BT = BinaryTree("Root")
btl = BinaryTree(1)
bt2 = BinaryTree(2)
bt3 = BinaryTree(3)
bt4 = BinaryTree(4)
bt5 = BinaryTree(5)
bt6 = BinaryTree(6)
bt5a = BinaryTree("5a")

bt5b = BinaryTree("5b")
bt5c = BinaryTree("5c")

BT.insertLeft(btl)
BT.insertRight(bt2)
bt2.insertLeft(bt3)
bt3.insertLeft(bt4)
bt3.insertRight(bt5)
bt2.insertRight(bt6)
btl.insertRight(bt5b)
btl.insertLeft(bt5a)
bt5b.insertRight(bt5c)
print("\nDelete right branch of 2")
bt2.deleteRight()

A sample tree...

if _npame_ == " main_ ": o o e
BT = BinaryTree("Root")

btl = BinaryTree(1)

bt2 = BinaryTree(2)

bt3 = BinaryTree(3)

bt4 = BinaryTree(4) ° ° °
bt5 = BinaryTree(5)

bt6 = BinaryTree(6)

bt5a = BinaryTree("5a")

bt5b = BinaryTree("5b")

bt5c = BinaryTree("5c") @

BT.insertLeft(btl)
BT.insertRight(bt2)
bt2.insertLeft(bt3)
bt3.insertLeft(bt4)
bt3.insertRight(bt5)
bt2.insertRight(bt6)
btl.insertRight(bt5b)
btl.insertLeft(bt5a)
bt5b.insertRight(bt5c)
print("\nDelete right branch of 2")
bt2.deleteRight()

A sample tree...

if npame == " main ":
BT = BinaryTree("Root")
btl = BinaryTree(1)
bt2 = BinaryTree(2)
bt3 = BinaryTree(3)
bt4 = BinaryTree(4)
bt5 = BinaryTree(5)
bt6é = BinaryTree(6)
bt5a = BinaryTree("5a")
bt5b = BinaryTree("5b")
bt5c = BinaryTree("5c")

BT.insertlLeft(btl)
BT.insertRight(bt2)
bt2.insertLeft(bt3)
bt3.insertLeft(bt4)
bt3.insertRight(bt5)
bt2.insertRight(bt6)
btl.insertRight(bt5b)
btl.insertLeft(bt5a)
bt5b.insertRight(bt5c)

Exercise. write a print function that gets the root
node and prints the tree:

Root (r)-> 2
Root (1)-> 1
=

-

(r)->

(1)-> 5a
5b (r)-> 5c¢

2 (

2 {

vV Vv

wwwo

)-
)-

~ =

A sam p | e tree. B Exercise. write a print function that gets the root

node and prints the tree:

Root (r)-> 2
Root (1)->1
Tabs depend i 2{{> gb
_— -> 5a
on depth 5b (r)-> 5¢
2 (r)-> 6
2 (L)->-3
3 (r)->5
3 (1)->4

def printTree(root):
cur = root
#each element is a node and a depth
#depth is used to format prints (with tabs)
nodes = [(cur,0)]
tabs = **
lev = 0
while len(nodes) >0:
cur, lev = nodes.pop(-1)
if cur.getRight() != None:
print ("{}{} (r)-> {}".format("\t"*lev,
cur.getValue(),
cur.getRight().getValue()))
nodes.append((cur.getRight(), lev+l))
if cur.getLeft() != None:
print ("{}{} (U)-> {}".format("\t"*lev,
cur.getValue(),
cur.getlLeft().getValue()))
nodes.append((cur.getLeft(), lev+l))

A sample tree...

def printTree(root):
cur = root
#each element is a node and a depth ° ° °
#depth is used to format prints (with tabs)

nodes = [(cur,0)]
tabs = "n

lev = 0
while len(nodes) >0: @

cur, lev = nodes.pop(-1)
if cur.getRight() != None:
print ("{}{} (r)-> {}".format("\t"*lev,

cur.getValue(), OUTPUT
cur.getRight().getValue())) Root (r)-> 2
nodes.append((cur.getRight(), lev+1)) Root (I)-> 1
if cur.getLeft() != None: 1(r)-> 5b

print ("{}{} (1)-> {}".format("\t"*lev,

cur.getValue(), 1(1)->5a
cur.getlLeft().getValue())) Sb (r)-> 5¢
nodes.append((cur.getLeft(), lev+l)) 2(h->3
3(r->5
3(1)-> 4

5 (I)-> child of 5

Tree traversals s

- Depth-First Search (DFS)
e Each subtree of the tree ° ° °

is visited, one after
another

A strategy to pass through (visit) all the nodes of a tree.

(Tree traversal / search]

@ Three variants
(pre/in/post order)

@ Requi res a stack
\ I J

To store all unfinished calls to DFS(node)

Tree traversals

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree.

Depth-First Search (DFS)

o Each subtree of the tree
is visited, one after

another Recursively
] . 1. visit Root
@ Three variants 2. DFS(left)
(pre/in/post order) 3. DFS(right)

@ Requi res a stack

L]

To store all unfinished calls to DFS(node)

Preorder:
Root

visit(Root) = print(“Root”)
call DFS(Root.getLeft())
which is DFS(1) =» visit(1)
DFS(“1”.getLeft()
DFS(“1”.getRight()

call DFS(Root.getRight())

Tree traversals

- Tree traversal / search

ﬂ A strategy to pass through (visit) all the nodes of a tree.

- Depth-First Search (DFS)

e Each subtree of the tree
is visited, one after
another

@ Three variants
(pre/in/post order)

@ Requi res a stack

Recursively
1. visit Root
2. DFS(left)
3. DFS(right)

Preorder: Stack: (5c¢ right of 5b!)
Root 1
1 Root

Tree traversals

- Tree traversal / search

ﬂ A strategy to pass through (visit) all the nodes of a tree.

- Depth-First Search (DFS)

e Each subtree of the tree
is visited, one after
another

@ Three variants
(pre/in/post order)

@ Requi res a stack

Recursively
1. visit Root
2. DFS(left)
3. DFS(right)

-

Preorder: Stack: (5c¢ right of 5b!)
Root 5a

1 1

5a Root

Tree traversals

- Tree traversal / search

ﬂ A strategy to pass through (visit) all the nodes of a tree.

- Depth-First Search (DFS)

e Each subtree of the tree
is visited, one after
another

@ Three variants
(pre/in/post order)

@ Requi res a stack

Recursively
1. visit Root
2. DFS(left)
3. DFS(right)

-

Preorder: Stack: (5c¢ right of 5b!)
Root 1

1 Root

5a

Tree traversals

- Tree traversal / search

ﬂ A strategy to pass through (visit) all the nodes of a tree.

- Depth-First Search (DFS)

e Each subtree of the tree
is visited, one after
another

@ Three variants
(pre/in/post order)

@ Requi res a stack

Recursively
1. visit Root
2. DFS(left)
3. DFS(right)

-

Preorder: Stack: (5c¢ right of 5b!)
Root 5b

1 1

5a Root

5b

~ Tree traversal / search

Tree traversals @
|

|
. A strategy to pass through (visit) all the nodes of a tree. a H E n
‘,f Depth-First Search (DFS)
e Each subtree of the tree ° ° °

is visited, one after

another Recursively - Preorder: Stack: (5c¢ right of 5b!)
) 1. visit Root Root 5¢c
@ Three variants 2. DFS(left) 1 5b
(pre/in/post order) 3. DFS(right) 5a 1
5b Root

e Requi res a stack S¢

Tree traversals

- Tree traversal / search

ﬂ A strategy to pass through (visit) all the nodes of a tree.

- Depth-First Search (DFS)

e Each subtree of the tree
is visited, one after
another

@ Three variants
(pre/in/post order)

@ Requi res a stack

Recursively
1. visit Root
2. DFS(left)
3. DFS(right)

-

Preorder:
Root

1

5a

5b

5¢c

Stack: (5c¢ right of 5b!)
5b

1

Root

Tree traversals

- Tree traversal / search

ﬂ A strategy to pass through (visit) all the nodes of a tree.

- Depth-First Search (DFS)

e Each subtree of the tree
is visited, one after
another

@ Three variants
(pre/in/post order)

@ Requi res a stack

Recursively
1. visit Root
2. DFS(left)
3. DFS(right)

-

Preorder: Stack: (5c¢ right of 5b!)
Root 1

1 Root

5a

5b

5c

Tree traversals

- Tree traversal / search

ﬂ A strategy to pass through (visit) all the nodes of a tree.

- Depth-First Search (DFS)

e Each subtree of the tree
is visited, one after
another

@ Three variants
(pre/in/post order)

@ Requi res a stack

Recursively
1. visit Root
2. DFS(left)
3. DFS(right)

-

Preorder: Stack: (5c¢ right of 5b!)
Root Root

1

5a

5b

5c

- Depth-First Search (DFS)
e Each subtree of the tree o ° °

is visited, one after

Tree traversals

- Tree traversal / search)

ﬂ A strategy to pass through (visit) all the nodes of a tree.

another Recursively - Preorder: Stack: (5¢ right of 5b!)
) 1. visit Root Root 2
@ Three variants 2. DFS(left) 1 Root
(pre/in/post order) 3. DFS(right) gz

5¢c

@ Requi res a stack)

U«*— Tree traversal / search ’ o °
. A strategy to pass through (visit) all the nodes of a tree. J a H E n

‘,f Depth-First Search (DFS)

e Each subtree of the tree ° ° °

is visited, one after

Tree traversals

another Recursively - Preorder: Stack: (5c¢ right of 5b!)
) 1. visit Root Root 3
@ Three variants 2. DFS(left) 1 2
(pre/in/post order) 3. DFS(right) gs Root
@ Requi res a stack gc

3

U«*— Tree traversal / search ’ o °
. A strategy to pass through (visit) all the nodes of a tree. J a H E n

‘,f Depth-First Search (DFS)

e Each subtree of the tree ° ° °

is visited, one after

Tree traversals

another Recursively - Preorder: Stack: (5c¢ right of 5b!)
) 1. visit Root Root 4
@ Three variants 2. DFS(left) 1 3
(pre/in/post order) 3. DFS(right) 5a 2
5b Root
@ Requi res a stack gc
3

4

U«*— Tree traversal / search ’ o °
. A strategy to pass through (visit) all the nodes of a tree. J a H E n

‘,f Depth-First Search (DFS)

e Each subtree of the tree ° ° °

is visited, one after

Tree traversals

another Recursively - Preorder: Stack: (5c¢ right of 5b!)
) 1. visit Root Root 3
@ Three variants 2. DFS(left) 1 2
(pre/in/post order) 3. DFS(right) gs Root
@ Requi res a stack gc
3

4

U«*— Tree traversal / search ’ o °
. A strategy to pass through (visit) all the nodes of a tree. J a H E n

‘,f Depth-First Search (DFS)

e Each subtree of the tree ° ° °

is visited, one after

Tree traversals

another Recursively - Preorder: Stack: (5c¢ right of 5b!)
) 1. visit Root Root 5
@ Three variants 2. DFS(left) 1 3
(pre/in/post order) 3. DFS(right) 5a 2
5b Root
@ Requi res a stack gc

3
4
5

U«*— Tree traversal / search ’ o °
. A strategy to pass through (visit) all the nodes of a tree. J a H E n

‘,f Depth-First Search (DFS)

e Each subtree of the tree ° ° °

is visited, one after

Tree traversals

another Recursively - Preorder: Stack: (5c¢ right of 5b!)
) 1. visit Root Root 3
@ Three variants 2. DFS(left) 1 2
(pre/in/post order) 3. DFS(right) gs Root
@ Requi res a stack gc

3
4
5

U«*— Tree traversal / search ’ o °
. A strategy to pass through (visit) all the nodes of a tree. J a H E n

‘,f Depth-First Search (DFS)

e Each subtree of the tree ° ° °

is visited, one after

Tree traversals

another Recursively - Preorder: Stack: (5c¢ right of 5b!)
) 1. visit Root Root 2
@ Three variants 2. DFS(left) 1 Root
(pre/in/post order) 3. DFS(right) gz
@ Requi res a stack gc

3
4
5

~ Tree traversal / search

Tree traversals @
|

|
. A strategy to pass through (visit) all the nodes of a tree. a H E n
‘,f Depth-First Search (DFS)
e Each subtree of the tree ° ° °

is visited, one after

another Recursively - Preorder: Stack: (5c¢ right of 5b!)
) 1. visit Root Root 6
@ Three variants 2. DFS(left) 1 2
(pre/in/post order) 3. DFS(right) gs Root
@ Requi res a stack gc

3
4
5
6

~ Tree traversal / search

Tree traversals @
|

|
. A strategy to pass through (visit) all the nodes of a tree. a H E n
‘,f Depth-First Search (DFS)
e Each subtree of the tree ° ° °

is visited, one after

another Recursively - Preorder: Stack: (5c¢ right of 5b!)
) 1. visit Root Root 2
@ Three variants 2. DFS(left) 1 Root
(pre/in/post order) 3. DFS(right) gz
@ Requi res a stack gc

3
4
5
6

~ Tree traversal / search

Tree traversals @
|

|
. A strategy to pass through (visit) all the nodes of a tree. a H E n
‘,f Depth-First Search (DFS)
e Each subtree of the tree ° ° °

is visited, one after

another Recursively - Preorder: Stack: (5c¢ right of 5b!)
) 1. visit Root Root Root
@ Three variants 2. DFS(left) 1
(pre/in/post order) 3. DFS(right) gz
@ Requi res a stack gc

3
4
5
6

- Tree traversal / search

Tree traversals @
| ”‘u

. A strategy to pass through (visit) all the nodes of a tree. | a H E n
~ Depth-First Search (DFS)
e Each subtree of the tree | ° ° °

is visited, one after

another Recursively - Preorder: Stack: (5c¢ right of 5b!)
) 1. visit Root Root
@ Three variants 2. DFS(left) 1
(pre/in/post order) 3. DFS(right) 22 empty! Done
h @ Requi res a stack gc

3
4
5
6

Tree traversals s

} A strategy to pass through (visit) all the nodes of a tree. q H H H n

- Depth-First Search (DFS)

e Each subtree of the tree ° ° °

is visited, one after

- Tree traversal / search

another Recursively - Inorder: Stack: (5c¢ right of 5b!)
. 1. DFS(left) Root
@ Three variants 2. visit Root
(pre/in/post order) 3. DFS(right)

@ Requi res a stack

Tree traversals s

} A strategy to pass through (visit) all the nodes of a tree. q H H H n

- Depth-First Search (DFS)

e Each subtree of the tree ° ° °

is visited, one after

- Tree traversal / search

another Recursively - Inorder: Stack: (5c¢ right of 5b!)
. 1. DFS(left) 1
@ Three variants 2. visit Root Root
(pre/in/post order) 3. DFS(right)

@ Requi res a stack

Tree traversals

- Tree traversal / search

} A strategy to pass through (visit) all the nodes of a tree.

\
L,

- Depth-First Search (DFS)

e Each subtree of the tree
is visited, one after
another

@ Three variants
(pre/in/post order)

@ Requi res a stack

Recursively
1. DFS(left)
2. visit Root
3. DFS(right)

Inorder:

Stack: (5c¢ right of 5b!)
5a

1

Root

Tree traversals

- Tree traversal / search

} A strategy to pass through (visit) all the nodes of a tree.

\
L,

- Depth-First Search (DFS)

e Each subtree of the tree
is visited, one after
another

@ Three variants
(pre/in/post order)

@ Requi res a stack

Recursively
1. DFS(left)
2. visit Root
3. DFS(right)

Inorder:

Stack: (5c¢ right of 5b!)
1
Root

Tree traversals

- Tree traversal / search

} A strategy to pass through (visit) all the nodes of a tree.

\
L,

- Depth-First Search (DFS)

e Each subtree of the tree
is visited, one after
another

@ Three variants
(pre/in/post order)

@ Requi res a stack

Recursively
1. DFS(left)
2. visit Root
3. DFS(right)

Inorder:

Stack: (5c¢ right of 5b!)
1
Root

Tree traversals

- Tree traversal / search

} A strategy to pass through (visit) all the nodes of a tree.

\
L,

- Depth-First Search (DFS)

e Each subtree of the tree
is visited, one after
another

@ Three variants
(pre/in/post order)

@ Requi res a stack

Recursively
1. DFS(left)
2. visit Root
3. DFS(right)

Stack: (5c¢ right of 5b!)
5b

1

Root

Tree traversals

- Tree traversal / search

ﬂ A strategy to pass through (visit) all the nodes of a tree.

- Depth-First Search (DFS)

e Each subtree of the tree
is visited, one after
another

@ Three variants
(pre/in/post order)

@ Requi res a stack

Recursively
1. DFS(left)
2. visit Root
3. DFS(right)

Inorder: Stack: (5c¢ right of 5b!)
5a 5b

1 1

5b Root

Tree traversals

- Tree traversal / search

ﬂ A strategy to pass through (visit) all the nodes of a tree.

- Depth-First Search (DFS)

e Each subtree of the tree
is visited, one after
another

@ Three variants
(pre/in/post order)

@ Requi res a stack

Recursively
1. DFS(left)
2. visit Root
3. DFS(right)

Inorder: Stack: (5c¢ right of 5b!)
5a 5¢

1 5b

5b 1R

5¢ oot

Tree traversals

- Tree traversal / search

ﬂ A strategy to pass through (visit) all the nodes of a tree.

- Depth-First Search (DFS)

e Each subtree of the tree
is visited, one after
another

@ Three variants
(pre/in/post order)

@ Requi res a stack

Recursively
1. DFS(left)
2. visit Root
3. DFS(right)

Inorder: Stack: (5c¢ right of 5b!)
5a 5b

1 1

5b Root

5¢

Tree traversals @

- Tree traversal / search)

ﬂ A strategy to pass through (visit) all the nodes of a tree.

- Depth-First Search (DFS)

e Each subtree of the tree o ° °
is visited, one after
another Recursively - Inorder: Stack: (5c¢ right of 5b!)
. 1. DFS(left) 5a 1
@ Three variants 2. visit Root 1 Root
(pre/in/post order) 3. DFS(right) 56
e Requi res a stack 5¢C

Tree traversals @

- Tree traversal / search)

ﬂ A strategy to pass through (visit) all the nodes of a tree.

- Depth-First Search (DFS)

e Each subtree of the tree o ° °
is visited, one after
another Recursively - Inorder: Stack: (5c¢ right of 5b!)
. 1. DFS(left) 5a Root
@ Three variants 2 visit Root 1
(pre/in/post order) 3. DFS(right) 56
e Requi res a stack 5¢C

Tree traversals @

- Tree traversal / search)

ﬂ A strategy to pass through (visit) all the nodes of a tree.

- Depth-First Search (DFS)

e Each subtree of the tree o ° °
is visited, one after
another Recursively - Inorder: Stack: (5c¢ right of 5b!)

) 1. DFS(left) 5a Root

@ Three variants 2 visit Root 1
(pre/in/post order) 3. DFS(right) 56

e Requi res a stack 5¢C

\ Root

Tree traversals @

- Tree traversal / search)

ﬂ A strategy to pass through (visit) all the nodes of a tree.

- Depth-First Search (DFS)

e Each subtree of the tree o ° °
is visited, one after
another Recursively - Inorder: Stack: (5c¢ right of 5b!)

. 1. DFS(left) 5a 2

@ Three variants 2. visit Root 1 Root
(pre/in/post order) 3. DFS(right) 56

e Requi res a stack 5¢C

\ Root

Tree traversals @

- Tree traversal / search n a
ﬂ A strategy to pass through (visit) all the nodes of a tree. a H H n

- Depth-First Search (DFS)

e Each subtree of the tree o ° °
is visited, one after
another Recursively - Inorder: Stack: (5c¢ right of 5b!)

. 1. DFS(left) 5a 3

@ Three variants 2 visit Root 1 2
(pre/in/post order) 3. DFS(right) 5b Root

e Requi res a stack S¢

“ Root

~ Tree traversal / search

Tree traversals @
|

|
. A strategy to pass through (visit) all the nodes of a tree. a H E n

‘,f Depth-First Search (DFS)

e Each subtree of the tree ° ° °
is visited, one after
another Recursively - Inorder: Stack: (5c¢ right of 5b!)
. 1. DFS(left) 5a 4
@ Three variants 2. visit Root 1 3
(pre/in/post order) 3. DFS(right) 56 2
. 5 Root
e Requi res a stack ¢
Root
4

Tree traversals @

- Depth-First Search (DFS)
e Each subtree of the tree o ° °

is visited, one after

- Tree traversal / search)

ﬂ A strategy to pass through (visit) all the nodes of a tree.

another Recursively - Inorder: Stack: (5c¢ right of 5b!)
. 1. DFS(left) 5a 3
@ Three variants 2 visit Root 1 2
(pre/in/post order) 3. DFS(right) 5b Root
e Requi res a stack S¢
\ Root
4

~ Tree traversal / search

Tree traversals @
|

|
. A strategy to pass through (visit) all the nodes of a tree. a H E n
‘,f Depth-First Search (DFS)
e Each subtree of the tree ° ° °

is visited, one after

another Recursively - Inorder: Stack: (5c¢ right of 5b!)
. 1. DFS(left) 5a 3
@ Three variants 2. visit Root 1 2
(pre/in/post order) 3. DFS(right) 5b Root
e Requi res a stack S¢
Root
4
3

U«*— Tree traversal / search ’ o °
. A strategy to pass through (visit) all the nodes of a tree. J a H E n

‘,f Depth-First Search (DFS)

Tree traversals

e Each subtree of the tree ° ° °
is visited, one after
another Recursively - Inorder: Stack: (5c¢ right of 5b!)
. 1. DFS(left) 5a 5
@ Three variants 2. visit Root 1 3
(pre/in/post order) 3. DFS(right) 56 2
. 5 Root
e Requi res a stack ¢
Root
4
3
5

Tree traversals

U«*— Tree traversal / search ’ o °
. A strategy to pass through (visit) all the nodes of a tree. J a H E n

‘,f Depth-First Search (DFS)

e Each subtree of the tree ° ° °

is visited, one after

another Recursively - Inorder: Stack: (5c¢ right of 5b!)
. 1. DFS(left) 5a 3
@ Three variants 2 visit Root 1 2
(pre/in/post order) 3. DFS(right) 5b Root
e Requi res a stack S¢
Root
4
3
5

U«*— Tree traversal / search ’ o °
. A strategy to pass through (visit) all the nodes of a tree. J a H E n

‘,f Depth-First Search (DFS)

e Each subtree of the tree ° ° °

is visited, one after

Tree traversals

another Recursively - Inorder: Stack: (5¢ right of 5b!)
1. DFS(left) 5a 2
o Three variants 2. visit Root 1 Root
(pre/in/post order) 3. DFS(right) 56
e Requi res a stack S¢
Root
4
3
5

~ Tree traversal / search

Tree traversals @
|

|
. A strategy to pass through (visit) all the nodes of a tree. a H E n
‘,f Depth-First Search (DFS)
e Each subtree of the tree ° ° °

is visited, one after

another Recursively - Inorder: Stack: (5¢ right of 5b!)
1. DFS(left) 5a 2
o Three variants 2. visit Root 1 Root
(pre/in/post order) 3. DFS(right) 56
e Requi res a stack S¢
Root
4
3
5
2

~ Tree traversal / search

Tree traversals @
|

|
. A strategy to pass through (visit) all the nodes of a tree. a H E n
‘,f Depth-First Search (DFS)
e Each subtree of the tree ° ° °

is visited, one after

another Recursively - Inorder: Stack: (5c¢ right of 5b!)
. 1. DFS(left) 5a 6
@ Three variants 2 visit Root 1 2
(pre/in/post order) 3. DFS(right) 5b Root
e Requi res a stack S¢
Root
4
3
5
2
6

~ Tree traversal / search

Tree traversals @
|

|
. A strategy to pass through (visit) all the nodes of a tree. a H E n
‘,f Depth-First Search (DFS)
e Each subtree of the tree ° ° °

is visited, one after

another Recursively - Inorder: Stack: (5¢ right of 5b!)
1. DFS(left) 5a 2
e Three variants 2. visit Root 1 Root
(pre/in/post order) 3. DFS(right) 56
@ Requi res a stack 5¢
Root
4
3
5
2
6

~ Tree traversal / search

Tree traversals @
|

|
. A strategy to pass through (visit) all the nodes of a tree. a H E n
‘,f Depth-First Search (DFS)
e Each subtree of the tree ° ° °

is visited, one after

another Recursively - Inorder: Stack: (5¢ right of 5b!)
) 1. DFS(left) 5a Root
@ Three variants 2 visit Root 1
(pre/in/post order) 3. DFS(right) 56
e Requi res a stack S¢
Root
4
3
5
2
6

- Tree traversal / search

Tree traversals @
| ”‘u

. A strategy to pass through (visit) all the nodes of a tree. | a H E n
~ Depth-First Search (DFS)
e Each subtree of the tree | ° ° °

is visited, one after

another Recursively - Inorder: Stack: (5¢ right of 5b!)
1. DFS(left) 5a
@ Three variants 2 visit Root 1 empty. Done!
(pre/in/post order) 3. DFS(right) 56
e Requi res a stack S¢
S Root
4
3
5
2
6

Tree traversals @

- Depth-First Search (DFS)
e Each subtree of the tree o ° °

is visited, one after

- Tree traversal / search)

ﬂ A strategy to pass through (visit) all the nodes of a tree.

another Recursively - Postorder: Stack: Exercise!
. 1. DFS(left) 5a
@ Three variants 2. DFS(right) 5¢ (right of 5b)
(pre/in/post order) 3. visit Root ?b
@ Requi res a stack g
: 3
6
2
Root

DFS: the code

Notes:
- Visit means “print” implicit
- itis a method of the class BinaryTree stack
def DFS(node, kind = "preorder"):
if node != None:
if kind == "preorder":

print("“{}".format(node.getValue()))
DFS(node.getlLeft(), kind = kind)
if kind == "inorder":

print("{}".format (node.getValue()))

DFS(node.getRight(), kind = kind) Erefrde“
if kind == "postorder": 00
print("{}".format(node.getValue())) 1
5a
5b
5¢c

Inorder: Postorder:
ba ba

1 5¢c
5b 5b
5¢c 1
Root 4

4 5

3 3

5 6

2 2

6 Root

Tree traversals

o~

L

Tree traversal / search

A strategy to pass through (visit) all the nodes of a tree. }

- Depth-First Search (DFS)

e Each subtree of the tree
is visited, one after
another

@ Three variants
(pre/in/post order)

- Breadth-First Search (BFS)

@ Each level of the tree is
visited, one after the
other

@ Starts from the root

@ Requi res a stack

e Requires a queue
\ J

- Tree traversal / search

Tree traversals @
| ”‘u

. A strategy to pass through (visit) all the nodes of a tree. | a H E n
- Breadth-First Search (BFS) -\,’
| (B) GA,))

e Each level of the tree is 0. Add root to the queue Q
visited, one after the Visit order Queue
other Recursively Root
1. getnode from Q
e Starts from the root 2. visit the node
o Requires a queue | 3. add all childrento Q

Tree traversals @

. A strategy to pass through (visit) all the nodes of a tree. j a H E n

- Breadth-First Search (BFS) ° ° °
|

|

- Tree traversal / search -

e Each level of the tree is 0. Add root to the queue Q
visited, one after the Visit order Queue
other Recursively Root 1,2
1. getnode from Q
e Starts from the root 2. visit the node

o Requires a queue 3. add all childrento Q

Tree traversals @

. A strategy to pass through (visit) all the nodes of a tree. j a H E n

- Breadth-First Search (BFS) ° ° °
|

|

- Tree traversal / search -

e Each level of the tree is 0. Add root to the queue Q
visited, one after the Visit order Queue
other Recursively Root 2, 5a, 5b
1. getnode from Q 1
e Starts from the root 2. visit the node

o Requires a queue 3. add all childrento Q

Tree traversals @

- Tree traversal / search ™)

. A strategy to pass through (visit) all the nodes of a tree. ° e ° o

- Breadth-First Search (BFS) ° ° °
|

| e Each level of the tree is 0. Add root to the queue Q

visited, one after the

. Visit order Queue
other Recursively Root 5a, 5b, 3,6
1. getnode from Q 1
@ Starts from the root 2. visit the node 5
o Requires a queue “ 3. add all childrento Q

Tree traversals

- Tree traversal / search

. A strategy to pass through (visit) all the nodes of a tree.

- Breadth-First Search (BFS)

e Each level of the tree is
visited, one after the
other

@ Starts from the root

e Requires a queue

0. Add root to the queue Q

Recursively

1.
2.
3.

get node from Q
visit the node
add all children to Q

Visit order Queue
Root 5b, 3,6
1

2

5a

Tree traversals

- Tree traversal / search

. A strategy to pass through (visit) all the nodes of a tree.

Breadth-First Search (BFS)

e Each level of the tree is 0. Add root to the queue Q
visited, one after the
el Recursively
1. getnode from Q
e Starts from the root 2. visit the node
o Requires a queue | 3. add all childrento Q

Visit order Queue
Root 3,6, 5c
1

2

5a

5b

Tree traversals

- Tree traversal / search

. A strategy to pass through (visit) all the nodes of a tree.

Breadth-First Search (BFS)

e Each level of the tree is 0. Add root to the queue Q
visited, one after the
el Recursively
1. getnode from Q
e Starts from the root 2. visit the node
o Requires a queue | 3. add all childrento Q

Visit order Queue
Root 6,5¢, 4,5
1

2

5a

5b

3

Tree traversals

- Tree traversal / search

. A strategy to pass through (visit) all the nodes of a tree.

Breadth-First Search (BFS)

e Each level of the tree is 0. Add root to the queue Q
visited, one after the
el Recursively
1. getnode from Q
e Starts from the root 2. visit the node
o Requires a queue | 3. add all childrento Q

Visit order Queue
Root 5¢, 4,5
1

2

5a

5b

3

6

Tree traversals

- Tree traversal / search

. A strategy to pass through (visit) all the nodes of a tree.

Breadth-First Search (BFS)

e Each level of the tree is 0. Add root to the queue Q
visited, one after the
el Recursively
1. getnode from Q
e Starts from the root 2. visit the node
o Requires a queue | 3. add all childrento Q

Visit order Queue
Root 4,5

1

2

5a

5b

3

6

5c¢

Tree traversals

- Tree traversal / search

. A strategy to pass through (visit) all the nodes of a tree.

Breadth-First Search (BFS)

e Each level of the tree is 0. Add root to the queue Q
visited, one after the
el Recursively
1. getnode from Q
e Starts from the root 2. visit the node
o Requires a queue | 3. add all childrento Q

Visit order Queue
Root 5

1

2

5a

5b

3

6

5c¢

4

Tree traversals

- Tree traversal / search

. A strategy to pass through (visit) all the nodes of a tree.

Breadth-First Search (BFS)

e Each level of the tree is 0. Add root to the queue Q
visited, one after the
el Recursively
1. getnode from Q
e Starts from the root 2. visit the node
o Requires a queue | 3. add all childrento Q

Visit order Queue
Root

1 Empty. Done
2

5a

5b

3

6

5c¢

4

5

Tree traversals

- Tree traversal / search

. A strategy to pass through (visit) all the nodes of a tree.

Breadth-First Search (BFS)

e Each level of the tree is 0. Add root to the queue Q
visited, one after the
el Recursively
1. getnode from Q
e Starts from the root 2. visit the node
o Requires a queue | 3. add all childrento Q

Visit order Level
Root
1

2

5a
5b

3

6

5c¢

4

5

WWWNNNN—= =0

Tree traversals: BFS

from collections import deque o °
def BFS(node):
Q = deque()
if node != None:
Q.append(node)
while len(Q) > 0:

curNode = Q.popleft()
if curNode != None: ° ° °
print("{}".format(curNode.getValue()))

Q.append(curNode.getlLeft())
Q.append(curNode.getRight())

BFS visit:
Root
1
Algorithm 2
0. Add root to the queue Q 5a
5b
Recursively 3
1. getnode from Q gc
2. visitthe node 4
3. add all childrento Q 5

Tree traversals: complexity ==

The cost of a visit of a tree containing n nodes is ©(n), because] ° ° °

[each node is visited exactly once.

Generic trees

Generic Trees are like binary trees, but each
node can have more than 2 children. One
possible implementation is that each node (that
is a subtree in itself) has a value, a link to its
parent and a list of children.

Another implementation is that each node has a
value, a link to its parent, a link to its next

sibling and a link to its first child.] (B]
o) U~) U~
7
[4 [N\ Parent]

Sibling J

| [
L | —{ | J L('hil(l

Generic trees

TREE
% Build a new node, initially containing v, with no children or r—%ﬁﬁ %%

parent L=+ [+ lJl|+>l||
Tree(OBJECT v)
|
% Read the value stored in nodes

OBJECT getValue()

% Write the value stored in nodes
setValue(OBJECT v)

% Returns the parent, or None if this node is root
TREE getParent()

% Returns the first child, or None if this node is leaf
TREE leftmostChild()

% Returns the next sibling, or None if there is none
TREE rightSibling() Exercise!
% Insert the subtree t as first child of this node
insertChild(TREE t)

% Insert the subtree ¢ as next sibling of this node
insertSibling(TREE t)

% Destroy the subtree rooted in the first child
deleteChild()

% Destroy the subtree rooted in the next sibling
deleteSibling()

Exercise

The visit order of a binary tree containing 9 nodes are the following:
o AE B,F, G, C, D, I H (pre-order) Root-Left-Right

e B,G,C,F, E H I D, A (post-order) Left-Right-Root

e B E G, F, C, A D, H, I (in-order) Left-Root-Right
What is the corresponding binary tree? Explain.

Exercise

The visit order of a binary tree containing 9 nodes are the following;:
o AJE B, F, G,C,D, I, H (pre-order)

e B,G,C,F,E H I D, A (post-order) °
e B E G,F, C, A D, H, I (in-order)

What is the corresponding binary tree? Explain.

Preorder visit Postorder visit Inorder visit ° o o

where | is on the right of D and H is on the left of |

I O0oOo@mMmwmX»
>O"IMTOO®
T IOr>rO0OTmMeOmMmMmD

Exercises

@ The width of a binary tree is the largest number of nodes that
belong to the same level. Write a function that given a tree ¢,
returns the width of .

@ The minimal height of a binary tree ¢ is the minimal distance °
between node v and any of the leaf in its subtree. Write a function
that given a tree ¢, returns the minimal height of ¢.

o Write a function that given a binary tree ¢ and an integer k, o o
returns the number of nodes at level k

Width: 3
Minimal height: 2
k =2 — output: 3

Exercise: width

def getwidth(tree): similar to BFS but we need to explicitly store the
"svgets the width of the tree""" level...
if tree == None:
return 0

level = [tree]
res = 1
while len(level) > 0:

print("Level: {}".format([x.getvalue() for x in level]))
tmp = []
for t in level:

r = t.getRight()

1 = t.getLeft()
if r != None:
tmp.append(r)

if 1 != None:
tmp.append(1)
res = max(res,len(tmp))
level = tmp

print("width of tree: {}".format(getwidth(exer)))

OJICIO
Level: ['D', 'E']
Level: ['I', 'F', 'B']

Level: ['H', 'C', 'G']) . -
Width of tree: 3 Min Height and nodes at level k are similar...

Exercise: count the nodes of each (sub)tree

How many nodes does a (sub)tree have?

IDEA: similar to DFS postorder-visit (summing the
counts). Remember to add 1 for the root.

Exercise: count the nodes of each (sub)tree

How many nodes does a (sub)tree have?

IDEA: similar to DFS postorder-visit (summing the
counts). Remember to add 1 for the root.

def count nodes(tree):

“""counts the nodes of each (sub)tree rooted at 'tree'"""

if tree == None:
return 0

else:
1 = count _nodes(tree.getLeft())
r = count nodes(tree.getRight())
return L + r + 1 #the count of the right, that of the left + the root

The tree rooted at 'A' has 9 nodes
The tree rooted at 'E' has 5 nodes
The tree rooted at 'D' has 3 nodes
The tree rooted at 'B' has 1 nodes
The tree rooted at 'F' has 3 nodes
The tree rooted at'l' has 2 nodes

The tree rooted at 'G' has 1 nodes
The tree rooted at 'C' has 1 nodes
The tree rooted at 'H' has 1 nodes

