Scientific Programming:
Part B

Graphs

Luca Bianco - Academic Year 2020-21
luca.bianco@fmach.it
[credits: thanks to Prof. Alberto Montresor]

Graphs

Graph:
G = (V,E)
Where V and E are finite sets:

" Vis the set of nodes (i.e. ‘things’)
* E is the set of edges (i.e. relationships among things) E : V x V

NOTE:
we can add labels to the nodes and weights to the edges

Graphs: examples

[From: Compeau et al, How to apply de Bruijn
graphs to genome assembly, Nature Biotech,2011]

Kypto Encyclopedia of
Genesand Genomes

RHEUMATOID ARTHRITIS

VEGF sigraling pathvray

Symvmlpam\u fonation

Synovium

0533 477111
(©) Kanehusa Laboratories

http://www.kegg.jp/

. examples

Graphs

A MSN of similarities among
000 Sars-Cov2 genomes

A “real” de-bruijn graph

Graphs: examples

UNDERGROUND

A 10 actor social network introduced by David
Krackhardt to illustrate: degree, betweenness,
centrality, closeness, etc. The traditional labeling is:
Andre=1, Beverley=2, Carol=3, Diane=4,

Ed=5, Fernando=6, Garth=7, Heather=8, lke=9,
Jane=0.

[Social Network analysis for startups, "O'Reilly Media,
Inc.", 2011]

The London underground system

Epping.
o b Barset Cockfesters Theydea Bois.
blodes Gt ”:"'
| LT Buckhurst Hill
o Efgeare .-m_umn v Beuee: guell
Canans Park Bu Oek [i Cantal gt grows-
Mﬁr‘“::‘;:“ remtficky oy Gromn Wosdtord QO mm
Presion |- Kingstary Brent Cross’ .m ';:': T e (= m-
Neasden Golders Grees' - Tt Bk "
23 P -) oo Ragiharse - Redbridge F.'.".""uu-—
1 Pt Wilesden Green ey oo Arsond, sy uwn:-:‘nm
"‘ e ey Road MF.: ot N U mmmaﬂum
1 Camden Town: Caledonan eath
Yoty N H:‘t.dm'r ...m wpoo tovon %9 umn"
- Sudbury Town 00 park \ rankos s
o
I._.. ‘ Y mn-
V“I M Eﬂ
1 / !hlst-
M Queznsway Mﬂ
= i, V o ""‘""m
s Bush nmq:m
| e Pk Cornar 'u-n ﬂ A4 -
= AN R , ‘"=-=- P\
ag 3 - O] Wt
e e e R B “ / e 31| Qe
o Broan? ., Sauth Quiy Beckan
o Surrey Quays = ?ﬁi
e | B s
L putney Bridg ‘. J::m l«cmb«'/-mum [t
L fast Puney e ket
Vauat wsion
L Souhtelds s AT
L Winblodon Part Capbam Canmun, Brtton
Clagharm
L Winblodon 7o
hlﬂl! .o
Calliers Woad,
Seat Wibiné
Mores

Graphs

Directed graph G = (V, E) Undirected graph G = (V. E)
@ V is a set of vertexes/nodes @ V is a set of vertexes/nodes
@ F'is a set of edges, i.e. @ F is a set of edges, i.e.

ordered pairs (u,v) of nodes unordered pairs [u, v] of
nodes

V={a,b,c,d,e,f}
{ (a,b),(a,d),(b,c),(d,a)
(d,c),(d,e),(e,c) }

<
I

{ a,b,c,d,e,f }
{ [a;b];[a.d]l;[b;cl;
[¢,d]; [d,el;[csel }

= (©O—©
® © ®
® (F—

Relations represented by edges can be symmetric (e.g. sibling_of: if X is sibling of Y then Y is sibling of X) and in this case the edges

[x3}
Il
k3]
I

are just lines rather than arrows. In this case the graph is directed. In case relationships are not symmetric (i.e. X—Y does not imply

Y—X) we put an arrow to indicate the direction of the relationship among the nodes and in this case we say the graph is undirected.

Definitions

e Vertex v is adjacent to u if and only if (u,v) € E.
@ In an undirected graph, the adjacency relation is symmetric

@ An edge (u,v) is said to be incident from u to v

e (a,b) is incident from a to b
o (a,d) is incident from a to d
@ (d,a) is incident from d to a
e b is adjacent to a

e d is adjacent to a

a is adjacent to d

Size and complexity

Definitions Ignoring self

loops
e n = |V|: number of nodes

e m = |E|: number of edges

Relationships between n and m

e In an undirected graph, m < @ = O(n?)
e In a directed graph, m < n? —n = O(n?)
Complexity of graph algorithms

@ The computational complexity is measured based on both n
and m (e.g. O(n+m)) Undirected

graph
n=4
m =6 (=4*3/2)

Size and complexity

Definitions Ignoring self

loops
e n = |V|: number of nodes

e m = |E|: number of edges

Relationships between n and m

e In an undirected graph, m < @ = O(n?)
e In a directed graph, m < n? —n = O(n?)
Complexity of graph algorithms

@ The computational complexity is measured based on both n

and m (e.g. O(n+m)) Directed graph
n=4
m =12 (=16-4)

Some special cases

@ A graph with an edge between all pairs of nodes is complete

e Informally (there is no agreement on the definitions)

e A graph with "few" edges is said to be sparse; e.g., graphs with
m = 0O(n), m = O(nlogn)
o A graph with "several" edges is said to be dense; e.g. m = Q(n?)

Some special cases

@ An unrooted tree is a connected graph withm =n —1

@ A rooted tree is a connected graph with m = n — 1 in which one
node is designated as the root.

@ A set of trees is called a forest
c ®

root

=

Degree

Undirected graphs ‘ Directed graphs
The degree of a node is the The in-degree (out-degree) of a
number of edges incident on it. node is the number of edges

incident to (from) it.

in 1 in 3
out 1 out 0
in 1
out 2

in 0
out 0

in 1 in 1
out 3 out 1

Random graphs

Erdos-Renyi (ER) Model

Create a network with n nodes connecting them with m (undirected) edges chosen randomly out of
the possible n*(n-1)/2 edges.

The probability of two random nodes to be connected is: p=2m/ (n *(n — 1))
The probability of a node to have a degree k (approx. Poisson): ; \ /
wy k)

plk) ~e " ——

Al

R,

E-R graph with p=0.01

Random graphs (1)

Barabasi-Albert (BA) Model
Networks grow: nodes are not fixed but grow as a function of time

Preferential attachment: the probability that a node gets an edge is proportional to its current
degree.

Start from a network with n nodes and m edges and add a node at every step, connecting it to
p<= N other nodes (with probability depending on their degree).

At time T the network will have n+T nodes and m+pT edges.

The probability of a node to have a degree k:

Example: scale free networks

BA networks are scale free: many vertices have few links while some (hubs) are
highly connected

Very robust against failure but vulnerable to intentional attacks

Examples of scale free networks:
Protein-protein interaction networks
Signal transduction and transcription networks
Internet and social relationships

Most highly connected proteins in the cell are the most important
for survival NL

[A. L. Barabasi and R. Albert. Emergence of scaling in random networks. Science,286(5439):509-512, 1999]

Definition: Path

Path

In a graph G = (V, E), a path C of length k is a sequence of nodes
UQ, U1, ..., ug such that (u;,uiy; € F) for 0 <i< k—1.

®—> C Example: a, b, ¢, e, d

is a path of length 4

It is also the shortest path between
a and d

Y Note: a path is said to be simple if
—@ all its nodes are distinct

Definition: Path

Path
In a graph G = (V, E), a path C of length k is a sequence of nodes
UQ, U1, ..., ug such that (u;,uiy1 € E) for 0 <i <k —1.

Example: a, b, c, e, d
is a path of length 4

Note: a path is said to be simple if
all its nodes are distinct

a,b,c,d is the shortest path from
atod

Finding paths...

Eulerian Cycle (undirected graphs)

YES: DABDCED

Is it possible to walk around the
graph in a way that would involve
crossing each EDGE exactly
once getting back to start node?

NO

If and only if O or 2 nodes have
an ODD number of edges

Algorithms exist to find the path in O(n+m)

Finding paths...

Eulerian Cycle (directed graphs)

B i

NO

Is it possible to walk around the
graph in a way that would involve
crossing each EDGE exactly
once getting back to start node?

\I/

YES: DCACEDABD

If the in-degree and out-degree
of all nodes are EQUAL

Algorithms exist to find the path in O(n+m)

Finding paths...

Hamiltonian Cycle (undirected graphs)

YES: ACBEDA

Is it possible to walk around the
graph in a way that would involve
crossing each NODE exactly
once getting back to start node?

NP-complete problem:

Problems for which there are no
polynomial time algorithms
known.

IF there was one, then all NP
problems would be solved
polynomially and P would be
equal to NP (P=NP).

Interestingly, it is easy to check if
a solution is correct or not (but it is
very hard to find such a solution!).

YES, if each node has degree >=n/2 (num
nodes, n >3)

This is a more complex problem. No polynomial
solution is currently known!

Graph ADT

" In the most general case, graphs are dynamic data structures in
which nodes and edges can be added /removed

GRAPH

Graph() % Create a new graph

INT size() % Returns the number of nodes

SET V() % Returns the set of all nodes

SET adj(NODE u) % Returns the set of nodes adjacent to u

insertNode(NODE u) % Add node u to the graph

insertEdge(NODE u, NODE v) % Add edge (u,v) to the graph

deleteNode(NODE u) % Removes node u from the graph NOTE: sometimes

graphs don’t change
after being loaded
(no delete)

deleteEdge(NODE u, NODE v) % Removes edge (u,v) from the graph

How can we represent a graph?

[Two possible "classic" implementations

e Adjacency matrix

e Adjacency lists

Adjacency matrix

1 (u,v) €E Space = n? bits
{1 0 -
start nodes end nodes
. 012345 -

(1)— 001010 0)

110 0 1 0 0 O

210 0 01 0 O

311 0 0 0 1 O

410 01 0 0 O

5\0 0000 0

How do | get all the outgoing edges of a node?
And the incoming ones?

{1 (u,v) €E Space = n? bits
Myy =

Adjacency matrix

0123 45
0/0 1 0100
110 01 0 00
210 001 0O
311000 10
410 01 0 0 O
@ 5\0 0 00 0O
+ : flexible, can put weights on edges 1 Bed e Space — n? or n(n — 1)/2
m,“.={ (u,v) ¢ E
+ : quick to check if edge is present (both ways!) —(D—) o g 1 3 51” ‘; z
1 1 0 0 0
+ . in undirected graphs, the matrix is symmetric 2 b 8
(saves half of the space) 4 0
5

- 1 in general, it uses a lot of space
(matrix n x n no matter how many edges)

o Edges may be associated with a weight (cost, profit, etc.)

o The weight is associated through a cost function w: V x V. — R

o If there is no edge between two vertices u, v, w(u,v) = 400
01 2 3 4 5
O of 50100
1 L1 0 0 0
2 1 70
i 3 8 0
4 0

5

Adjacency list

G.adj(u) = {v|(u,v) € E} Space = an + bm bits

a b

Q 0 0| e

\4
[
®
\ 4
w
(]

How do | get all the outgoing edges of a node?
And the incoming ones?

Adjacency list: undirected graph

G.adj(u) = {v|(u,v) € E} Space = an + 2 - bm

©

€y
@

A4 A4 A4 A4

\ 4 \ 4

N o - o =
w N w N w

\ 4 \ 4 \ 4 \ 4 A4

L
A 4

[é2] > w N — o

Adjacency list

G.adj(u) = {v|(u,v) € E} Space = an + bm bits
+: flexible, nodes can be complex objects . ;
(ex. node1.list_add(node2);) e e—
0 > 1
1| e > 2
+: uses less space . -
3 [o] > 0
: checking presence of an edge is in general slower @ A
(requires going through the list of source node) ;

-: getting all incoming edges of a node is slow G.adi(u) = {v](s,v) € E} Sishr— -0
(requires going through all nodes!) «

Workaround: store another list with all “IN"-linking nodes (o) @ (2)

e eIy Iy
I
!

oo~ e

e

o s w N e O

G—® ©

Possible implementations

Structure Java C++ Python

Linked list LinkedList | list

Static vector [] [] []

Dynamic vector ArrayList vector list

Set HashSet set set
TreeSet

Dictionary HashMap map dict
TreeMap

Some libraries are available for python (like networkx or igraph)
(if interested see htips://networkx.org/ or https://igraph.org/)

Both the concepts of adjacency matrix and adjacency list can be implemented in several ways.
Our simple implementation of a weighted directed graph will use a dictionary
Before that we will see an implementation based on lists

https://networkx.org/
https://igraph.org/

Graph as adjacency matrix: exercise

class DiGraphAsAdjacencyMatrix:
def _init_ (self):
#would be better a set, but I need an index
self._ nodes = list()
self. matrix = list()

def len_ (self):
"""gets the number of nodes"""
return len(self._ nodes)

de

-h

nodes(self):
return self. nodes

de

-h

matrix(self):
return self. matrix

def str (self):
#T0DO
pass

de

-

insertNode(self, node): Nodes:
ﬁ;ggo [Node_1', 'Node_2', 'Node_3', 'Node_4', 'Node_5', 'Node_6']
Matrix:

ey T Ioelenateie We) [0, 0.5,0,0,0,1],[0,0,05,0,0, 1],[0,0,0, 0.5, 0, 1], [0, 0,

pass 0,0,0.5,1],[0.5,0,0,0,0,1],[0,0,0,0,0, 1]]

deleteEdge(self, nodel,node2):
"""removing an edge means to set its

;‘onl;;gsponding place in the matrix to @""" Output Of prlnt(G)

pass

deleteNode(self, mode): Node 1 Node 2 Node 3 Node 4 Node 5 Node 6

"""removing a node means removing Node 1 0.5 - 0
it di d 1 5 th trix""" S

;Tswgorrespon ing row and column in the matrix Node_2 0.5
pass Node_3

def adjacent(self, node, incoming = True): NOde_4
#T0D0 Node 5
pess Node 6

def edges(self):
#TODO
pass

de

=

de

-

de

-

[oNoNoNoNoNo]
cooo®
[cNoNoNo)
[ooNoNoNoNo]
w
[c¥oNoXoRoXol
[-

Graph as adjacency matrix: exercise

class DiGraphAsAdjacencyMatrix:

def

def

def

def

def

de

-

de

=

de

-

de

-

def

def

__ipit_ (self):

#would be better a set, but I need an index

self._ nodes = list()
self. matrix = list()

__len_ (self):
"""gets the number of nodes"""
return len(self._ nodes)

nodes(self):
return self. nodes

matrix(self):
return self. matrix

__str__ (self):
#TODO
pass

insertNode(self, node):
#TODO
pass

insertEdge(self, nodel, node2, weight):

#T0DO
pass

deleteEdge(self, nodel,node2):
"""removing an edge means to set its

corresponding place in the matrix to """

#TODO
pass

deleteNode(self, node):
“"""removing a node means removing

its corresponding row and column in the matrix"""

#TODO
pass

adjacent(self, node, incoming = True):
#TODO
pass

edges(self):
#TODO
pass

Example
Adding a node

(1row + 1 col)

Output of print(G):

Node 1
Node 2
Node 3
Node 4
Node 5
Node 6
Node_7

Nodes:

[Node_1', 'Node_2', 'Node_3', 'Node_4', 'Node_5', 'Node_6']
Matrix:

[[0,05,0,0,0,1],[0,0,05,0,0,1],10,0,0,0.5,0, 1], [0, O,
0,0,0.5,1],[05,0,0,0,0,1],[0,0,0,0,0,1]]

Node 1 Node 2 Node 3 Node 4 Node 5 Node 6 Node 7

CNoloNoNoNoNo)

0

Socoocoocoooe

L
0.5

0

cCooco®

[=NoloNoNoNoNo)

SCooooe®
w

O

©Socoococoo

, - : : (=
Weighted Graph (adj list as a dict of dicts) o ‘ ®
(—

class Graph: #adds the edge startN --> endN with weight w
A) #that has 0 as default
initializer, nodes are private! def insert edge(self, startN, endN, w = 0):
def _init (self): #does nothing if already in
self. nodes = dict() self.insert node(startN)
) self.insert node(endN)
#returns the size of the Graph self. nodes[startN][endN] = w -
#accessible through len(Graph) G=F
def len_ (self): ; ; .
return len(self._ nodes) fg‘f’”"egfﬁ t'(fe{’?)”:’h =aEplacsrtany Note:
Ao e s out str = "Nodes:\n" + ",".join(self. nodes) nodes[‘a’] ={'b’ :0, ‘d’ :0}
out_str +="\nEdges:\n" A = [6q7 -
def V(self): for u in self._ nodes: nodes['d]={a’:0, ...}
return self. nodes.keys() for v in self. nodes[u]:
#a generator of nodes to access all of them if lgﬁ&:{;.J(n({n}ies[l{l%) ;{}\n -Tomatil, setl. nodesu]fyl,v)
#once (not a very useful example!) out str +="{}\n".format(u)
def node iterator(self): return out str
for n in self. nodes.keys(): - =
yield n .) a --b-->0
if _name_ == "_ main_": a--d-->0
#a generator of edges (as triplets (u,v,w)) to access all of them 6=Graph) b --c-->0
def edge iterator(self): for u,v in [(fd? "al')))'('(d? ',c?))'(fdkf ',ef))'(,e,)T g --a—-: g
for u in self._nodes: . - s edgé(u,v)' . . , 5 . : d ::g::> 8
for vian self. nodes[u]: for edge in G.edge iterator(): e --c--> 0
yield (u,v,self. nodes[u][v]) print("{} --{}--> {}".format(edge[0],
. edge[1], G has 6 nodes:
#returns all the adjacent nodes of node edge[2])) abdcef
#as a dictionary with key as the other node G.insert node('f') Nodes:
#and value the weight print("\nG has {} nodes:".format(len(G))) a,b,d,c,e,f
def adj(self,node): for node in G.node iterator(): Edges:
if node in self. nodes.keys(): print("{}".format(node), end= " ") a--0-->b
return self. nodes[node] print("") a --0-->d
print(G) b --0--> ¢
#adds the node to the graph print(“Nodes adjacent to 'd': {}".format(G.adj("d'))) d --6-->a
def insert node(self, node): print("\nNodes adjacent to 'c': {}".format(G.adj('c'))) g "g": c
if node not in self. nodes: B~ 8
self._nodes[node] = dict() for simplicity nodes are strings (can & B
make them objects as an exercise) f

Weighted Graph (adj list as a dict of dicts)

class Graph:

initializer, nodes are private!
def init (self):
self. nodes = dict()

#returns the size of the Graph
#accessible through len(Graph)
def len_ (self):

return len(self._ nodes)

#returns the nodes
def V(self):
return self. nodes.keys()

#a generator of nodes to access all of them
#once (not a very useful example!)
def node iterator(self):
for n in self. nodes.keys(): -
yield n

#a generator of edges (as triplets (u,v,w)) to access all of them
def edge iterator(self):

for u in self. nodes:
for v in self._ nodes[u]:
yield (u,v,self. nodes[u]l[v])

#returns all the adjacent nodes of node
#as a dictionary with key as the other node
#and value the weight
def adj(self,node):
if node in self. nodes.keys():
return self. nodes[node]

#adds the node to the graph
def insert node(self, node):
if node not in self. nodes:
self. nodes[node] = dict()

#that has 0 as default

def insert edge(self, startN, endN, w = 0):
#does nothing if already in
self.insert node(startN)

self.insert node(endN)
self. nodes[startN][endN] = w -
#converts the graph into a string .
def str (self): Note:
out _str = "Nodes:\n" + ",".join(self._ nodes) nodes[‘a’] ={‘b’:0, ‘d’ :0}
out_str +="\nEdges:\n"
for u in self._ nodes:
for v in self. nodes[u]:
out_str +="{} --{}--> {}\n".format(u,self. nodes[u][v],v)
if len(self. nodes[u]) ==
out_str +="{}\n".format(u)
return out_str

#adds the edge startN --> endN with weight w \\Ole

if _name_ == " main_":
G = Graph()
for u;voinm | (?al, 'bY),. (Ga, d*), b c),
(Bd,tat)e (hd S e SR (B di et S (et te) o]
G.insert_edge(u,v)
for edge in G.edge iterator():
print("{} --{}--> {}".format(edge[0],
edge[1],
edge[2]))
G.insert _node('f')
print("\nG has {} nodes:".format(len(G)))
for node in G.node iterator():
print("{}".format(node), end= " ")
print("")
print(G)
print("Nodes adjacent to 'd': {}".format(G.adj('d')))
print("\nNodes adjacent to 'c': {}".format(G.adj('c')))

for simplicity nodes are strings (can Modss adjacentita, 1" e G S6TR0E: Tes @)
make them objects as an exercise) Nodes adjacent to 'c': {}

U W N = O

lterating through nodes/edges

Equivalent ways of looping through nodes and edges

for node in G.V(): for node in G.node iterator():
#do something with the node #do something with the node

for edge in G.edge iterator():
for u in G.V(): #do something with the edge
#for all starting nodes u
for v in G.adj(u):
#for all ending nodes v
#do something with (u,v)

How much do these operations cost? (n nodes, m edges)

012345 e Looping through nodes is O(n)

010100 e Looping through edges is:

001000 o O(m + n) with adjacency lists and variants

000100 A . : .

1B DG T 0 o O(n"2) with adjacency matrices

001000

000000 i

ion of Graph

Summary

EAdjacency matrix

)

e Required space O(n?)

e To check whether u is adjacent to v requires O(1) time
@ Ideal for dense graphs

@ Looping through all the edges requires O(n?)

Undirected Directed Weighted
® ? (- ¥c]
¢ N/
Q
0\\0/\ \ L4
/e . o
(] (]
co e co e f
12

[Adjacency lists/vectors

e Required space O(n + m)
e To check whether u is adjacent to v requires O(n)

@ Ideal for sparse graphs

@ Looping through all the edges requires O(n + m)

y List Rep of Graph

Graph traversal

Problem definition

Given a graph G = (V, F) and a vertex r € V (root), visit exactly
once all the vertexes of the graph that can be reached from r

Naive idea, just iterate through the nodes and
edges with:

for u in G.V():
#for all starting nodes u
for v in G.adj(u): or
#for all ending nodes v
#do something with (u,v)

for edge in G.edge iterator():
#do something with the edge

but this does not take into account the @ G
topology of the graph and is still O(n + m) e

OK in some cases, but not what we are @
looking for!

Graph traversal

— Problem definition

Given a graph G = (V, F) and a vertex r € V (root), visit exactly
once all the vertexes of the graph that can be reached from r

-

\

As in the case of trees, two possible methods:

e Breadth first search (BFS)
e Depth first search (DFS)

Graph traversal

Problem definition

Given a graph G = (V, E) and a vertex r € V (root), visit exactly
once all the vertexes of the graph that can be reached from r

As in the case of trees, two possible methods:

e Breadth first search (BFS)
® Depth first search (DFS)

but graphs are more complicated that trees (these
are Directed Acyclic Graphs)

no matter what, \
beware of cycles!
Hint: mark visited nodes

Graph traversal: BFS

Problem definition

Given a graph G = (V, E) and a vertex r € V (root), visit exactly
once all the vertexes of the graph that can be reached from r

.

- Breadth-first search (BFS)

Traverse the graph by visiting the nodes by levels: first by visiting
the nodes at distance 1 from the source, then distance 2, etc.

e Application: compute the shortest paths from a single source

BFS, goals

[To visit nodes at increasing distances from the source]

e Visit nodes at distance k before visiting nodes at distance k + 1

(Generate a breadth-first tree J

® To generate a tree containing all the nodes reachable from r and
such that the path between the root r and the node in the tree
corresponds to a shortest path in the graph

[Compute the shortest path from s to all the other reachable nodes j

e Distance measured as the number of edges to be traversed

Graph traversal

Warning. Wrong code!!!
%;8&"2811ections import deque()

def BFS(node):
Q = deque()
if node != None:
Q.append(node)

while len(Q) > 0:
curNode = Q.popleft()
if curNode !'= None:
print("{}".format(curNode))
for v in G.adj(curNode):
Q.append(v)

Queue = { a }

Graph traversal

Warning. Wrong code!!!
%;;&"2811ections import deque()

def BFS(node):
Q = deque()
if node != None:
Q.append(node)

while len(Q) > 0:
curNode = Q.popleft()
if curNode !'= None:
print("{}".format(curNode))
for v in G.adj(curNode):
Q.append(v)

Graph traversal

Warning. Wrong code!!!
%;;&"2811ections import deque()

def BFS(node):
Q = deque()
if node != None:
Q.append(node)

while len(Q) > 0:
curNode = Q.popleft()
if curNode !'= None:
print("{}".format(curNode))
for v in G.adj(curNode):
Q.append(v)

Queue = { f,e,b,a,d }

Graph traversal

Warning. Wrong code!!!
%;;inéallections import deque()

def BFS(node):
Q = deque()
if node != None:
Q.append(node)

while len(Q) > 0:
curNode = Q.popleft()
if curNode != None:
print("{}".format(curNode))
for v in G.adj(curNode):
Q.append(v)

Queue = { e,b,a,d,a,b,d,g }

L

even though we can
avoid adding elements
already in the Queue,
this never gets empty!
= infinite loop!

Graph traversal: BFS

from collections import deque

class Graph:

def BFS(self, node):
Q = deque()

Q.append (node) l « enqueue

visited = set()
visited.add(node)
print("visiting: {}".format(node))

while len(Q) > 0:
curNode = Q.popleft() dequeue visiting: a
#do something with curNode
for n in self.adj(curNode):
#do something with edge 4(curNode, n)
if n not in visited:
Q.append(n)
visited.add(n)
print("visiting: {}".format(n))

print(“"visited: {}".format(visited))
print("Q: {}".format(list(Q)))

visited: {'a"}
Q: [lal]
DFS visit: a

Graph traversal: BFS

from collections import deque

class Graph:

def BFS(self, node):
Q = deque()
Q.append(node)
visited = set()
visited.add(node)
print("visiting: {}".format(node))

while len(Q) > 0:
curNode = Q.popleft() visiting: ¢
#do something with curNode C
for n in self.adj(curNode): visiting: f
#do something with edge (curNode, n) visiting: e
if n not in visited:
Q.append(n)
visited.add(n)
print("visiting: {}".format(n))

print(“"visited: {}".format(visited))
print("Q: {}".format(list(Q)))

visited: {'e', 'f", 'c', 'a'}
Q: [ICI, 'f‘, lel] — a
DFS visit: a, c, f, e

Graph traversal: BFS

from collections import deque

class Graph:

def BFS(self, node):
Q = deque()
Q.append(node)
visited = set()
visited.add(node)
print("visiting: {}".format(node))

while len(Q) > 0:
curNode = Q.popleft() visiting: b
#do something with curNode C
for n in self.adj(curNode): visiting: d
#do something with edge (curNode, n)
if n not in visited:
Q.append(n)
visited.add(n)
print("visiting: {}".format(n))

print(“"visited: {}".format(visited))

print("Q: {}".format(list(Q)))
visited: {'d', 'b’, 'a', 'c', '¢e', 'f'}
Q: [lfl, lel’ lbl’ Idl] C
DFS visit: a,c,f, e, b, d

Graph traversal: BFS

from collections import deque

class Graph:

def BFS(self, node):
Q = deque()
Q.append(node)
visited = set()
visited.add(node)
print("visiting: {}".format(node))

while len(Q) > 0:
curNode = Q.popleft() visiting: g
#do something with curNode
for n in self.adj(curNode):
#do something with edge (curNode, n)
if n not in visited:
Q.append(n)
visited.add(n)
print("visiting: {}".format(n))

print(“"visited: {}".format(visited))
print("Q: {}".format(list(Q)))

visited: {'d', 'b', 'a', 'd’, 'c', 'e', 'f’}
Q: [lel’ lbl’ Idl, lgl] — f
DFS visit: a,c,f, e, b,d, g

Graph traversal: BFS

from collections import deque

class Graph:

def BFS(self, node):
Q = deque()
Q.append(node)
visited = set()
visited.add(node)
print("visiting: {}".format(node))

while len(Q) > 0:
curNode = Q.popleft() visiting: h
#do something with curNode
for n in self.adj(curNode):
#do something with edge (curNode, n)
if n not in visited:
Q.append(n)
visited.add(n)
print("visiting: {}".format(n))

print(“"visited: {}".format(visited))
print("Q: {}".format(list(Q)))

visited {ldl’ Ibl, lhl, |a|, |g|’ ICI, |e|, lfl}
Q: [lbl’ ldl’ Igl, lhl] — e
DFS visit: a,c,f,e,b,d, g, h

Graph traversal: BFS

from collections import deque

class Graph:

def BFS(self, node):
Q = deque()
Q.append(node)
visited = set()
visited.add(node)
print("visiting: {}".format(node))

while len(Q) > 0:
curNode = Q.popleft() visiting: -
#do something with curNode
for n in self.adj(curNode):
#do something with edge (curNode, n)
if n not in visited:
Q.append(n)
visited.add(n)
print("visiting: {}".format(n))

print(“"visited: {}".format(visited))
print("Q: {}".format(list(Q)))

visited {ldl’ Ibl’ lhl, |a|, |g|’ ICI, |e|, lfl}
Q: [ldl’ lgl’ lhl] b
DFS visit: a,c,f,e,b,d, g, h

Graph traversal: BFS

from collections import deque

class Graph:

def BFS(self, node):
Q = deque()
Q.append(node)
visited = set()
visited.add(node)
print("visiting: {}".format(node))

while len(Q) > 0:
curNode = Q.popleft() visiting: -
#do something with curNode
for n in self.adj(curNode):
#do something with edge (curNode, n)
if n not in visited:
Q.append(n)
visited.add(n)
print("visiting: {}".format(n))

print(“"visited: {}".format(visited))
print("Q: {}".format(list(Q)))

visited {ldl’ Ibl’ lhl, |a|, |g|’ ICI, |e|, lfl}
Q: [lgl’ lhl] d
DFS visit: a,c,f,e,b,d, g, h

Graph traversal: BFS

from collections import deque

class Graph:

def BFS(self, node):
Q = deque()
Q.append(node)
visited = set()
visited.add(node)
print("visiting: {}".format(node))

while len(Q) > 0:
curNode = Q.popleft() visiting: j
#do something with curNode
for n in self.adj(curNode):
#do something with edge (curNode, n)
if n not in visited:
Q.append(n)
visited.add(n)
print("visiting: {}".format(n))

print(“"visited: {}".format(visited))
print("Q: {}".format(list(Q)))

visited {ldl’ Ibl, IJ‘I’ lhl’ Ial, lgl, ICI, lel, lf!}
Q: [lhl’ ljl] g
DFS visit: a,c,f, e, b,d, g, h,j

Graph traversal: BFS

from collections import deque

class Graph:

def BFS(self, node):
Q = deque()
Q.append(node)
visited = set()
visited.add(node)
print("visiting: {}".format(node))

while len(Q) > 0:
curNode = Q.popleft() visiting: -
#do something with curNode
for n in self.adj(curNode):
#do something with edge (curNode, n)
if n not in visited:
Q.append(n)
visited.add(n)
print("visiting: {}".format(n))

print(“"visited: {}".format(visited))
print("Q: {}".format(list(Q)))

visited {ldl’ Ibl’ ljl’ lhl’ Ial, lgl, ICI’ Iel, lf!}
Q: [71] —» h
DFS visit: a,c,f, e, b,d, g, h,j

Graph traversal: BFS

from collections import deque

class Graph:

def BFS(self, node):
Q = deque()
Q.append(node)
visited = set()
visited.add(node)
print("visiting: {}".format(node))

while len(Q) > 0:
curNode = Q.popleft()
#do something with curNode
for n in self.adj(curNode):

#do something with edge (curNode, n)

if n not in visited:
Q.append(n)
visited.add(n)
print("visiting: {}".format(n))

print(“"visited: {}".format(visited))
print("Q: {}".format(list(Q)))

visiting: -

visited {ldl’ Ibl’ ljl’ lhl’ Ial, lgl, ICI’ Iel, lf!}
Q:[] — DONE —> |
DFS visit: a,c,f, e, b,d, g, h,j

Node Distfroma

SQ O oT o o o
WNNNMNN—S = =0

—.

Graph traversal: BFS tree of the graph

from collections import deque

class Graph:

def BFS(self, node):
Q = deque()
Q.append(node)
visited = set()
visited.add(node)
print("visiting: {}".format(node))

while len(Q) > 0:
curNode =h0.pop1eft() . visiting: -
#do something with curNode . ot Tt B et e ht 1 tr
for n in self.adj(curNode): visited: {'d’, 0", ', 'n’, "a’, 'g’, 'c’, '¢’, T}
#do something with edge (curNode, n) Q:]
if n not in visited: DONE!
Q.append(n)
visited.add(n)
print("visiting: {}".format(n))

BFS froma: c,f, e, b,d, g, h,j

print("visited: {}".format(visited))
print("Q: {}".format(list(Q))) This can be done by

storing a pointer
to parents!

Graph traversal: BFS complexity

Complexity: O(n + m)

» every node is inserted in the queue at most once;
» whenever a node is extracted all its edges are analyzed once and only once;
» number of edges analyzed:
m= Z out_degree(u)

ueV

BFS: application. Shortest path

Paul Erdos (1913-1996)

@ Mathematician

e 1500+ papers, 500+ co-authors

~ Erdos number
e Erdos has erdos =0
@ The co-authors of Erdos have erdos = 1

e If X is co-author of someone with
erdos = k, but is not co-author of
someone with erdos < k, then X has
erdos = k + 1

@ People who are not reached by this
definition have erdos = +o00

N is a Number
A PoRteal) ar Faui baoie

Find the path between two authors:
[Luca Bianco [Paul Erdés

Luca Bianco
co-authored 11 papers with
Vincenzo Manca
co-authored 1 paper with
Henning Fernau
co-authored 1 paper with
Zsolt Tuza
co-authored 7 papers with
Paul Erdés

for fun: https://www.csauthors.net/distance distarice =4
D

https://www.csauthors.net/distance

BFS: application. Shortest distance/Shortest path
P

from collections import deque
import math

class Graph:

#computes the distance from root of all nodes
def get distance(self, root):

distances = dict()

parents = dict()

for node in self.node iterator(): .
distances[node] = math.inf Initially
mm) parents[node] = -1 all distances: +o

Q = deque() all parents: -1
Q.append(root)
distances[root] = 0 « distance root <-> root = 0
parents[root] = root _
while len(Q) > 0: parent of root = root
curNode = Q.popleft()
for n in self.adj(curNode):
if distances[n] == math.inf: .)
distances[n] = distances[curNode] + 1 distances is used also as
parents[n] = curNode ‘visited’
Q.append(n) if not set, distance node:

return (distances,parents) distance of parent +1

BFS: application. Shortest distance/Shortest path
P

from collections import deque
import math

class Graph:

#computes the distance from root of all nodes
def get distance(self, root):
distances = dict()
parents = dict()
for node in self.node iterator():
distances[node] = math.inf
parents[node] = -1
Q = deque()
Q.append(root)
distances[root] = 0
parents[root] = roo
while len(Q) > 0:
curNode = Q.popleft()
for n in self.adj(curNode):

t

if distances[n] == math.inf:
distances[n] = distances[curNode] + 1 D, P = Gl.get distance('a")
parents[n] = curNode print("Distances from 'a‘': {}".format(D))
Q.append(n) print("All parents: {}".format(P))
return (distances,parents) Distances from 'a": {'a": 0, 'c: 1, 'f: 1, 'e": 1,'b" 2,'d 2,'g" 2, j': 3, 'h": 2,

'Kz inf, 'I' inf}
AII parents: {lal: lal’ IC': lal’ lf': lal, lel: lal’ lbl: 'C', ldl: 'C" lgl: lf‘, ljl: lgl’ Ihl: lel’
k' -1, -1}

BFS: application. Shortest distance/Shortest h

from collections import deque
import math

class Graph:

#computes the distance from root of all nodes
def get distance(self, root):
distances = dict()
parents = dict()
for node in self.node iterator():
distances[node] = math.inf
parents[node] = -1
Q = deque()
Q.append(root)
distances[root] = 0
parents[root] = root
while len(Q) > 0:
curNode = Q.popleft()
for n in self.adj(curNode):

if distances[n] == math.inf:

distances[n] = distances[curNode] + 1 D, P = G2.get distance('b")

parents[n] = curNode print("Distances from 'b': {}".format(D))

Q.append(n) print("All parents: {}".format(P))

return (distances,parents) Distances from 'b": {'a": 4, 'c": 5, 'f: 1, '€ 5, 'b": 0,'d": 4,'g" 2, 'j: 3, 'h":
6, 'k': inf, 'I': inf}
AII parents: {lal: Ij', ICI: lal, lfl: lbl, lel: lal, Ibl: Ibl, ldl: ljl’ Igl: lf‘, ljl: lgl’ Ihl:
Note: this is the BFS spanning tree starting 'e’, 'k’ -1, -1}

from root

BFS: application. Shortest distance/Shortest path
P

printing the shortest path...

def printPath(startN, endN, parents):
outPath = str(endN)
#this assumes all the nodes are in the
#parents structure
curN = endN
while curN !'= startN and curN != -1:
curN = parents[curN]
outPath = str(curN) + " --> " + outPath
if str(curN) != startN:
return "Not available"

return outPath

BFS: application. Shortest distance/Shortest path
.

printing the shortest path...

def printPath(startN, endN, parents):
outPath = str(endN)
#this assumes all the nodes are in the
#parents structure

curN = endN

while curN !'= startN and curN !'= -1: «
curN = parents[curN] root or nodes not
outPath = str(curN) + " --> " + outPath reached == -

if str(curN) != startN:
return "Not available"

return outPath

D, P = G2.get distance('a’

All parents: {'a": 'a’, 'c": 'a’, 'f’': 'a", 'e": 'a’, 'b": 'c’, 'd": et (o)

ICI Igl: lfl ljl: lgl lhl: lel Ikl: _1 II': _1} print("Path from 'a' to 'j 1 {}" .fOrmat(printPath(- ’ 'j'
’ ’ ’ ’ ’ print("Path from 'a' to 'k': {}".format(printPath('a’, 'k’

Path from'a'to j>a -->f-->g -->j
Path from 'a' to 'k': Not available

Exercise

What if the shortest path between (a,)) is j» a???

def get shortest path(self, start, end):
#your courtesy
#returns [start, node,.., end]
#if shortest path is start --> node --> ... --> end

pass

Shortest path from 'a'to 'j": j --> a

BFS: application. Shortest distance/Shortest path
&

printing the shortest path...

def printPath(startN, endN, parents):
outPath = str(endN)
#this assumes all the nodes are in the
#parents structure

curN = endN

while curN !'= startN and curN !'= -1: «
curN = parents[curN] root or nodes not
outPath = str(curN) + " --> " + outPath reached == -

if str(curN) != startN:
return "Not available"

return outPath

LS PR T R R PR DU TR ¥ TR 1R R Y P O T A PR A} D, P = G2.get distance('b"')
Al parents. {a 2T, e a’l fL b et ' bt print("Distances from 'b': {}".format(D))
at gt e it tgt tht e, K1, 1) print("All parents: {}".format(P))

print("Path from 'b' to 'c': {}".format(printPath('b','c', P)))

Path from'b'to'c:b-->f-->g-->j-->a-->c¢

Traversals: Depth First Search (DFS)

[Depth-first search j

@ Often a subroutine of the solution of other problems

@ Used to explore the entire graph, not just the nodes reachable from
a single source (unlike BFS)

[Output J

o Instead of a tree, a depth-first forest Gy = (V. Ey)
e Contains a collection of depth-first trees

[Data structure j

o Explicit Stack
® Or implicit stack, through recursion

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)...

... then recursively all its children nodes
(follow one path until it ends)

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)...

... then recursively all its children nodes
(follow one path until it ends)

Execution stack:

Visited: {1}
Visiting order: [1]

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)...

... then recursively all its children nodes
(follow one path until it ends)

Execution stack:

Visited: {1,2}
Visiting order: [1,2]

Traversals: Depth First Search (DFS)

l

Idea:

Visit the first node (mark it as visited)...

... then recursively all its children nodes
(follow one path until it ends)

Execution stack:

Visited: {1,2,3}
Visiting order: [1,2,3]

Traversals: Depth First Search (DFS)

l

Idea:

Visit the first node (mark it as visited)...

... then recursively all its children nodes
(follow one path until it ends)

Execution stack:

Visited: {1,2,3,4}
Visiting order: [1,2,3,4]

Traversals: Depth First Search (DFS)

\%
Y
. W
\%
Visit the first node (mark it as visited)...
\%
... then recursively all its children nodes ‘
(follow one path until it ends)

Execution stack:

Visited: {1,2,3,4}
Visiting order: [1,2,3,4]

callon 4
complete

Traversals: Depth First Search (DFS)

l

Idea:

Visit the first node (mark it as visited)...

... then recursively all its children nodes
(follow one path until it ends)

Execution stack:

Visited: {1,2,3,4,6}
Visiting order: [1,2,3,4,6]

Traversals: Depth First Search (DFS)

\Y
%
. W
Visit the first node (mark it as visited)...)
%
... then recursively all its children nodes ‘
(follow one path until it ends)

Execution stack:

Visited: {1,2,3,4,6}
Visiting order: [1,2,3,4,6]

callon 6
complete

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)...

... then recursively all its children nodes ‘
(follow one path until it ends)

Execution stack:

Visited: {1,2,3,4.6) S . DFS@E)
Visiting order: [1,2,3,4,6] : clon 3

complete

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)...

... then recursively all its children nodes
(follow one path until it ends)

Execution stack:

Visited: {1,2,3,4,6,5}
Visiting order: [1,2,3,4,6,5]

p

Traversals: Depth First Search (DFS)

Y%
Idea:
Y
Visit the first node (mark it as visited)...
Y%
... then recursively all its children nodes ‘

(follow one path until it ends)

Execution stack:

Visited: {1,2,3,4,6,5) S . DFS(B) |
Visiting order: [1,2,3,4,6,5] : cllons

complete

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)...

... then recursively all its children nodes
(follow one path until it ends)

Execution stack:

Visited: {1.2,3,4,6,5) e . DFS@) |

Visiting order: [1,2,3,4,6,5]

callon 2

o ompete

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)...

.. then recursively all its children nodes
(follow one path until it ends)

Visited: {1,2,3,4,6,5}
Visiting order: [1,2,3,4,6,5]

W

»

DFS(1)

callon1
complete
DONE!

Traversals: Depth First Search (DFS)

Idea:

Visit the first node (mark it as visited)...

... then recursively all its children nodes
(follow one path until it ends)

Execution stack:

Visited: {1.2,3,4,6,5.7) e o DFS() |

Visiting order: [1,2,3,4,6,5,7]

callon?

_oesm ompete

Recursive Depth First Search (DFS)

def DFS(self, node, visited):
visited.add(node)
visit node (preorder)
print("visiting: {}".format(node))
for u in self.adj(node):

if u not in visited:
self.DFS(u, visited)

##visit node (post-order)

DFS from a:
visiting: a
visiting: ¢
if _name__ == " main_": visiting: b
G2 = Graph() C g
for u, v in [('a’, 'c'), (*a', 'f'), ('a', 'e'), ('c', 'b'), ('c’, 'd'), visiting: f
(L R (R Ca RS RGNS e) (T g () (C e) s
(G0 PP Y 5 I 6 ORI T G R PO G) T (G et B visiting: g
G2.insert_edge(u,v) visiting: j
print("DFS from {}:".format('a')) YT
visited = set() VISItIng. d
G2.DFS('a', visited) visiting: e

visiting: h

Recursive Depth First Search (DFS)

def DFS(self, node, visited):
visited.add(node)
visit node (preorder)
print("visiting: {}".format(node))
for u in self.adj(node):

if u not in visited:
self.DFS(u, visited)

##visit node (post-order)

DFS from b:
visiting: b
visiting: f
if npame_ == "_ main_ ": visiting:
G2 = Graph() s s g g
for lu,cvidni F(taso ey)L S (as, R ittar, e Rl s e D athe) S e d)) visiting: j
(‘b', 'f'), ('d','f"),('d','g"), (*f','g"),('g","'j"), ('e','h'), PRTE.
Ch) CR L0 . U1 e Gt) U e visiting: a
G2.insert_edge(u,v) visiting' c
print("DFS from {}:".format('b')) Visiting' d
visited = set() e
G2.DFS('b', visited) visiting: e
visiting: h

Recursive Depth First Search (DFS)

@ To execute a DFS based on Stack size in Java
recursive calls may be risky in
Ver}r large graphs Platform Default
@ It is possible that the reached Windows IA32 |64 KB
depth is larger than the size of the |Linux 132 128 KB

language stack Windows x86_64 | 128 KB

@ In such cases, you should prefer a Linux x86_64 |256 KB
BFS or a DFS based on explicit

Windows IA64 320 KB
stack

Linux IA64 1024 KB (1 MB)

Solaris Sparc 512 KB

With recursive calls, “unclosed” calls are memorized in
the stack and with big graphs this can cause a stack
overflow error.

lterative Depth First Search (DFS)

deque append and

def DFS(self, root): W e

#stack implemented as deque

S = deque()
S.append(root)
visited = set()
while len(S) > 0: now only
node = S.pop() preorder
if not node in visited:
#visit node in preorder
print("visiting {}".format(node))
visited.add(node)

for n in self.adj(node):

#visit edge (node,n) print("DFS from a:")

Shappendin) G2.DFS('a"')
K grmsodin o ., print("DFS from b:")
° A node can be inserted 62.DFS('b")
in the stack several
times DFS from a: DFS from b
o The check if a node has V!S!t!ng a v!s!t!ng b
been already visited is V!S!t!ng E V!S!t!ng f
done at the extraction, \\;:z:t::g . v!s!t!ng g
not when inserting visitingjd szftf:gjd Note: post-order is more
visiti . .
e Complexity O(m + n) v!s!t!ng b visiting complicated. We need to visit all the
o O(m) edge visits visiting f visiting e angsqnderanoderﬂbeﬂxe .
o O(m) insert, remove visiting g visiting h visiting it. Add a tag to the node in
o O(n) node visits visiting ¢ visiting ¢ the stack (discovery , finished)

Connected graphs and components

Definitions

e An undirected graph G = (V, E) is connected iff every node is
reachable from every other node

e An undirected graph G’ = (V', E’) is a connected component iff G’
is a connected and maximal subgraph of G

e G’ is a subgraph of G (G’ C G)
if V'CVand E'CE

e (' is maximal iff there is no
other graph G” of G such that
G" is connected and larger than

G (ie. ¢'c€"e6)

These are not connected
components as they are not
Note: maximal!

We start with undirected graphs (otherwise we have strongly connected components)

Connected components

[Motivations j

o Several algorithms that operate on graphs start by decomposing
the graph into disconnected components

e The algorithm is then executed in each of the components

@ The results are then composed back together

[Definitions)

e Connected components (CC), defined on undirected graphs

e Strongly connected components (SCC), defined on directed graphs

Reachability

[Reachable]
A node v is reachable from a node wu if there is at least one path from u

to v.
Node d is reachable from node a
and vice-versa

Node d is reachable from node A,
but not vice-versa

Application of DFS

[Problem]

@ To check whether an undirected graph is connected or not
e To identify its connected components

(Solutions)
e A graph is connected if, at the end of the DFS, all nodes have been
marked

e If not, a single pass is not sufficient; the traversal must start again
from an unmarked node, identifying a new component of the graph

Connected components

def

def

cc(G):
ids = dict()
for node in G.node iterator():
ids[node] = @
counter = 0
for u in G.node iterator():
if ids[u] == 0:
counter += 1
ccdfs(G, counter, u, ids)
return (counter, ids)

ccdfs(G, counter, u, ids):
ids[u] = counter
for v in G.adj(u):
if ids[v] == 0:
ccdfs(G, counter, v, ids)

W

=@

e dsis a list containing the component identifiers (it is also used as ‘visited’ structure)

e ids[u] is the identifier of the connected component to which u belongs

.

Connected components

def cc(G):
ids = dict()
for node in G.node iterator():
ids[node] = © e Q e @ o
counter = 0 \
for u in G.node iterator():
if ids[u] == 0: o
counter += 1 /
ccdfs(G, counter, u, ids) - 0 e 0
return (counter, ids)
def ccdfs(G, counter, u, ids): -

ids[u] = counter
for v in G.adj(u): @c@
if ids[v] == 0:
ccdfs(G, counter, v, ids) -

N, con _comp = cc(myG)
print("{} connected components:\n{}".format(N,con_comp))

3 connected components:
{a“1,'b1,'c:1,'d> 1, 2,'g:2,'f:2,'n": 2,"i" 2, " 3, 'k": 3}

Connected components

def cc(G):
ids = dict()
for node in G.node iterator():
ids[node] = @
counter = 0
for u in G.node iterator():
if ids[u] == 0:

counter += 1 <::|
ccdfs(G, counter, u, ids)

return (counter, ids)

ids[u] = counter
for v in G.adj(u):
if ids[v] == 0:
ccdfs(G, counter, v, ids)

def ccdfs(G, counter, u, ids): j

N, con comp = cc(myG)

print("{} connected components:\n{}".format(N,con_comp))

3 connected components:
{a"1,'b"1,'c:1,'d:1,'e" 2,'9g~2,'f:2,'n": 2,"" 2, "": 3, 'k": 3}

\%

.

Note: for simplicity of the slides,
let’'s assume that node_iterator
retrieves nodes in alphabetical

order. This is irrelevant for the

algorithm

Connected components

def cc(G):
ids = dict()
for node in G.node iterator(): 1 1
ids[node] = © o e
counter = 0 e e \
for u in G.node iterator():
if ids[u] == 0: o
counter += 1 /
ccdfs(G, counter, u, ids) e 9 0
return (counter, ids)
def ccdfs(G, counter, u, ids):
ids[u] = counter -

for v in G.adj(u): @c@
if ids[v] == 0:
ccdfs(G, counter, v, ids) -

N, con _comp = cc(myG)
print("{} connected components:\n{}".format(N,con_comp))

3 connected components:
{a“1,'b1,'c:1,'d> 1, 2,'g:2,'f:2,'n": 2,"i" 2, " 3, 'k": 3}

Connected components

def cc(G):
ids = dict()
for node in G.node iterator():
ids[node] = ©
counter = 0
for u in G.node iterator():
if ids[u] == 0:
counter += 1
ccdfs(G, counter, u, ids)
return (counter, ids)

def ccdfs(G, counter, u, ids):
ids[u] = counter
for v in G.adj(u):

if ids[v] == 6: - ids is =0

ccdfs(G, counter, v, ids)

N, con _comp = cc(myG)
print("{} connected components:\n{}".format(N,con_comp))

3 connected components:
{a“1,'b1,'c:1,'d> 1, 2,'g:2,'f:2,'n": 2,"i" 2, " 3, 'k": 3}

Connected components

def cc(G):
ids = dict()
for node in G.node iterator():
ids[node] = ©
counter = 0
for u in G.node iterator():
if ids[u] == 0:
counter += 1
ccdfs(G, counter, u, ids)
return (counter, ids)

def ccdfs(G, counter, u, ids): '

ids[u] = counter
for v in G.adj(u):

if ids[v] == 0:
ccdfs(G, counter, v, ids) -

N, con _comp = cc(myG)
print("{} connected components:\n{}".format(N,con_comp))

3 connected components:
{a“1,'b1,'c:1,'d> 1, 2,'g:2,'f:2,'n": 2,"i" 2, " 3, 'k": 3}

Connected components

def cc(G):
ids = dict()
for node in G.node iterator():
ids[node] = ©
counter = 0
for u in G.node iterator():
if ids[u] == 0:
counter += 1
ccdfs(G, counter, u, ids)
return (counter, ids)

def ccdfs(G, counter, u, ids):
ids[u] = counter
for v in G.adj(u):

if ids[v] == 6: - ids is =0

ccdfs(G, counter, v, ids)

N, con _comp = cc(myG)
print("{} connected components:\n{}".format(N,con_comp))

3 connected components:
{a“1,'b1,'c:1,'d> 1, 2,'g:2,'f:2,'n": 2,"i" 2, " 3, 'k": 3}

Connected components

def cc(G):
ids = dict()
for node in G.node iterator():
ids[node] = ©
counter = 0
for u in G.node iterator():
if ids[u] == 0:
counter += 1
ccdfs(G, counter, u, ids)
return (counter, ids)

def ccdfs(G, counter, u, ids):
ids[u] = counter -
for v in G.adj(u):
if ids[v] == 0:

ccdfs(G, counter, v, ids) -

N, con _comp = cc(myG)
print("{} connected components:\n{}".format(N,con_comp))

3 connected components:
{a“1,'b1,'c:1,'d> 1, 2,'g:2,'f:2,'n": 2,"i" 2, " 3, 'k": 3}

Connected components

def cc(G):
ids = dict()
for node in G.node iterator():
ids[node] = ©
counter = 0
for u in G.node iterator():
if ids[u] == 0:
counter += 1
ccdfs(G, counter, u, ids)
return (counter, ids)

def ccdfs(G, counter, u, ids):

ids[u] = counter
for v in G.adj(u): @C®
if ids[v] == o: - idsis!=0

ccdfs(G, counter, v, ids)

N, con _comp = cc(myG)
print("{} connected components:\n{}".format(N,con_comp))

3 connected components:
{a“1,'b1,'c:1,'d> 1, 2,'g:2,'f:2,'n": 2,"i" 2, " 3, 'k": 3}

Connected components

def cc(G):
ids = dict()
for node in G.node iterator():
ids[node] = ©
counter = 0
for u in G.node iterator():
if ids[u] == 0:
counter += 1
ccdfs(G, counter, u, ids)
return (counter, ids)

def ccdfs(G, counter, u, ids):
ids[u] = counter
for v in G.adj(u):

if ids[v] == @: . ids is 1= O

ccdfs(G, counter, v, ids)

N, con _comp = cc(myG)
print("{} connected components:\n{}".format(N,con_comp))

3 connected components:
{a“1,'b1,'c:1,'d> 1, 2,'g:2,'f:2,'n": 2,"i" 2, " 3, 'k": 3}

Connected components

def

def

cc(G):
ids = dict()
for node in G.node iterator():
ids[node] = ©
counter = 0
for u in G.node iterator():
if ids[u] == 0:
counter += 1
ccdfs(G, counter, u, ids)
return (counter, ids)

ccdfs(G, counter, u, ids):
ids[u] = counter
for v in G.adj(u):
if ids[v] == 0:
ccdfs(G, counter, v, ids)

N, con _comp = cc(myG)
print("{} connected components:\n{}".format(N,con_comp))

3 connected components:
{a“1,'b1,'c:1,'d> 1, 2,'g:2,'f:2,'n": 2,"i" 2, " 3, 'k": 3}

callond
completed

Connected components

def

def

cc(G):
ids = dict()
for node in G.node iterator():
ids[node] =
counter = 0
for u in G.node iterator():
if ids[u] == 0:
counter += 1
ccdfs(G, counter, u, ids)
return (counter, ids)

ccdfs(G, counter, u, ids):
ids[u] = counter
for v in G.adj(u):
if ids[v] == 0:
ccdfs(G, counter, v, ids)

N, con comp = cc(myG)
print("{} connected components:\n{}".format(N,con_comp))

3 connected components:
{a"1,'b"1,'c:1,'d:1,'e" 2,'9g~2,'f:2,'n": 2,"" 2, "": 3, 'k": 3}

<:| callonc,b,a

completed in the

order

The algorithm
tries to restart
from b,c,d but
nodes are
visited...

some steps later...
component 1is
done, component
2 starts...

Connected components

def cc(G):
ids = dict()
for node in G.node iterator():
ids[node] = ©
counter = 0
for u in G.node iterator():
if ids[u] == 0:
counter += 1
ccdfs(G, counter, u, ids)
return (counter, ids)

def ccdfs(G, counter, u, ids): 3
ids[u] = counter
for v in G.adj(u):
if ids[v] == 0:
ccdfs(G, counter, v, ids)

N, con _comp = cc(myG)
print("{} connected components:\n{}".format(N,con_comp))

3 connected components:
{a“1,'b1,'c:1,'d> 1, 2,'g:2,'f:2,'n": 2,"i" 2, " 3, 'k": 3}

Definitions

Cycle
In a undirected graph G = (V, E), a cycle C of length &k > 2 is a
sequence of nodes ug, uy, ..., ux such that (u;,u;y; € E) for 0 <i <

k —1 and uy = ug.

k > 2 is meant to exclude trivial
cycles composed by edge pairs
(u,v) and (v, u), which are
everywhere in undirected graphs

H Ignored, trivial cycle

Definitions

[Acyclic graph J

A undirected graph that does not e e
contain cycles, is called acyclic. e e

(Problem)

Given a undirected graph G, write an algorithm that returns true if G
contains a cycle, false otherwise.

[How would you solve the problem? J

Idea: perform a DFS visit, if it finds a node
already visited then there is a cycle

Cycle detection: undirected graph

def has cycleRec(G, u, from node, visited):
visited.add(u)
for v in G.adj(u):
if v != from node: #to avoid trivial cycles
if v in visited:
return True
else:
#continue with the visit to check
#if there are cycles
if has cycleRec(G,v, u, visited):
return True
return False

def has cycle(G):

visited = set()

#I am starting the visit from all nodes

for node in G.node iterator():

if node not in visited:
if has cycleRec(G, node, None, visited):
return True
return False

Cycle detection: undirected graph

def

def

has cycleRec(G, u, from node, visited):

visited.add(u)
for v in G.adj(u): \ the node | am coming from

if v != from node: #to avoid trivial cycles

if v in visited:
return True

else:
#continue with the visit to check
#if there are cycles
if has cycleRec(G,v, u, visited):

return True
return False

has cycle(G):
visited = set()
#I am starting the visit from all nodes
for node in G.node iterator():
if node not in visited:
if has cycleRec(G, node, None, visited): T e o T
return True ' ("', "c'), (et ey, (Fet, ey, ('d). ('al,

('d','e")]:
return False myG.insert _edge(u,v)

print(has_cycle(myG))

True

Cycle detection: undirected graph

def

def

has cycleRec(G, u, from node, visited):
visited.add(u)
for v in G.adj(u):
if v != from node: #to avoid trivial cycles
if v in visited:
return True
else:
#continue with the visit to check
#if there are cycles
if has cycleRec(G,v, u, visited):
return True

return False

has cycle(G):
visited = set()
#I am starting the visit from all nodes

. . X myG = Graph()
for r.IOde e G.noqe_l'gerato.r(). er u, vig E('a', W) (i da) (b ey s (e, Eb S (et hd),
if node not in visited: o (Pt 1) pves T (g R e
if has cycleRec(G, node, None, visited): ('d','e")]:

return True myG.insert edge(u,v)

return False print(has_cycle(myG))

True

Cycle detection: undirected graph

def has cycleRec(G, u, from node, visited): (&
visited.add(u)
for v in G.adj(u):
if v != from node: #to avoid trivial cycles

if v in visited:
return True

else:
#continue with the visit to check

#if there are cycles
if has cycleRec(G,v, u, visited):
return True
return False

e
def has cycle(G): ::::: ::::

visited = set()
#I am starting the visit from all nodes

: : myG = Graph()
for node in G.node iterator(): for w,bvodn [(Fat, bd), By, e BB, ey, Si(et, SR YY),
if node not in visited: g:g:gg:;i'e'fc').('eh'd'L
if has cycleRec(G, node, None, visited): mijnserLﬁdéelhvi
return True
return False print(has_cycle(myG))

False

Cycle detection: directed graph

— Cycle
In a directed graph G = (V, E), a cycle C of length &k > 2 is a
sequence of nodes ug, uy, . .., ug such that (u;,u;11 € E) for 0 <i <

k —1 and ug = ug.

e @ Example: a,b,c,e,d,a is a cycle of
length 5

Note: a cycle is called simple if all

e its nodes are distinct (excluding
the first and the last ones)

Ex.a»bsc»e=>d=>c=+e>d=>a
‘_< :) is not a simple cycle

Directed acyclic graph (DAG)

-~ DAG

A directed acyclic graph
(DAG) is a directed graph
that does not contain cycles.

|

Cyclic graph
(A graph containing a cycle is

called cyclic

J
Y

Cycle detection

Problem

Given a directed graph G, write an algorithm that returns true if
G contains a cycle, false otherwise.

Problem

Can you draw a directed graph such that the algorithm we have
seen before does not return the correct answer?

Cycle detection

Problem

Given a directed graph G, write an algorithm that returns true if
G contains a cycle, false otherwise.

Problem

Can you draw a directed graph such that the algorithm we have
seen before does not return the correct answer?

visiting a

visited: {a}

Cycle detection

Problem

Given a directed graph G, write an algorithm that returns true if
G contains a cycle, false otherwise.

Problem

Can you draw a directed graph such that the algorithm we have
seen before does not return the correct answer?

visiting a
visiting b

visited: {a,b}

Cycle detection

Problem

Given a directed graph G, write an algorithm that returns true if
G contains a cycle, false otherwise.

Problem

Can you draw a directed graph such that the algorithm we have
seen before does not return the correct answer?

visiting a
visiting b
visiting ¢
visited: {a,b,c}

Cycle detection

-~ Problem -

Given a directed graph G, write an algorithm that returns true if
(G contains a cycle, false otherwise.

|
|

-~ Problem \

Can you draw a directed graph such that the algorithm we have
seen before does not return the correct answer?

J
>,

back fromatoc
= cycle detected!
WRONG ANSWER

visiting a
visiting b
visiting ¢
visited: {a,b,c}

Edge classification

-~ DFS Spanning Tree

Whenever an edge connecting a marked node to an unmarked one,
it is inserted into a tree T’

Every edge (u,v) not included in T belongs ?ve
to one of three categories e

o (u,v) is a forward edge iff v is a descendent

— edges part of the

DFS visit (and also ofuinTp

in the DFS _ ' .

Spanning tree) o (u,v) is a back edge iff v is an ancestor of u
in7T __ >

e Otherwise, (u,v)is a cross edgep

DFS edge

Edge classification e

clock = 0 Cross edge
def dfs schema(G, node, dt, ft): dt = dict()

#clock: visit time (global variable) df = dict())

#dt: discovery time -— for node in G.node iterator():

#ft: finish time gg[noge] = 8

global clock clock is increased by one at fupdelle

clock += 1 each operation

dt[node] = clock
print("Start time {}: {}".format(node, clock))
for v in G.adj(node): _ perform a DFS visit
if dt[v] == 0: if dtfv] == 0 » equals to v
#DFS VISIT edge NOT visited

#visit the edge (node,v) e
print("\tDFS edge: {} --> {}".format(node, v))
dfs_schema(G,v, dt, ft)
elif dt[node] > dt[v] and ft[v] == 0:
#BACK EDGE
#visit the back edge (node,v)

print("\tBack edge: {}--> {}".format(node,v))

elif dt[node] < dt[v] and ft[v] != 0:
#FORWARD EDGE

#visit the forward edge (node,v)
print("\tForward edge: {}--> {}".format(node,v))
else:

#CROSS EDGE

print("\tCross edge: {} --> {}".format(node,v))
clock += 1 _ increase the time and set the finish time of node
ft[node] = clock
print("Finish time {}: {}".format(node,bclock))

return dt, ft s,e = dfs_schema(G, 'a’, dt, df)

s,e = dfs_schema(G, 'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))

Edge classification

clock = 0

def dfs schema(G, node, dt, ft):
#clock: visit time (global variable)
#dt: discovery time
#ft: finish time
global clock

clock += 1
dt[node] = clock
print("Start time {}: {}".format(node, clock))

for v in G.adj(node):
if dt[v] == 0:
#DFS VISIT edge
#visit the edge (node,v)
print("\tDFS edge: {} --> {}".format(node, v))
dfs_schema(G,v, dt, ft)
elif dt[node] > dt[v] and ft[v] == 0:
#BACK EDGE
#visit the back edge (node,v)
print("\tBack edge: {}--> {}".format(node,v))
elif dt[node] < dt[v] and ft[v] != 0:
#FORWARD EDGE
#visit the forward edge (node,v)
print("\tForward edge: {}--> {}".format(node,v))
else:
#CROSS EDGE
print("\tCross edge: {} --> {}".format(node,v))
clock += 1
ft[node] = clock
print("Finish time {}: {}".format(node,bclock))
return dt,ft

DFS edge
Forward edge
Back edge
Cross edge

Start time a: 1
E—®

s,e = dfs_schema(G, 'a’, dt, df)

s,e = dfs_schema(G, 'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))

Edge classification

clock = 0

def dfs schema(G, node, dt, ft):
#clock: visit time (global variable)
#dt: discovery time
#ft: finish time
global clock

clock += 1
dt[node] = clock
print("Start time {}: {}".format(node, clock))

for v in G.adj(node):
if dt[v] == 0:
#DFS VISIT edge
#visit the edge (node,v)
print("\tDFS edge: {} --> {}".format(node, v))
dfs_schema(G,v, dt, ft)
elif dt[node] > dt[v] and ft[v] == 0:
#BACK EDGE
#visit the back edge (node,v)
print("\tBack edge: {}--> {}".format(node,v))
elif dt[node] < dt[v] and ft[v] != 0:
#FORWARD EDGE
#visit the forward edge (node,v)
print("\tForward edge: {}--> {}".format(node,v))
else:
#CROSS EDGE
print("\tCross edge: {} --> {}".format(node,v))
clock += 1
ft[node] = clock
print("Finish time {}: {}".format(node,bclock))
return dt,ft

DFS edge
Forward edge
Back edge
Cross edge

Start time a: 1
DFS edge:a-->b

s,e = dfs_schema(G, 'a’, dt, df)

s,e = dfs_schema(G, 'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))

Edge classification

clock = 0

def dfs schema(G, node, dt, ft):
#clock: visit time (global variable)
#dt: discovery time
#ft: finish time
global clock

clock += 1
dt[node] = clock F
print("Start time {}: {}".format(node, clock))

for v in G.adj(node):
if dt[v] == 0:
#DFS VISIT edge
#visit the edge (node,v)
print("\tDFS edge: {} --> {}".format(node, v))
dfs_schema(G,v, dt, ft)
elif dt[node] > dt[v] and ft[v] == 0:
#BACK EDGE
#visit the back edge (node,v)
print("\tBack edge: {}--> {}".format(node,v))
elif dt[node] < dt[v] and ft[v] != 0:
#FORWARD EDGE
#visit the forward edge (node,v)
print("\tForward edge: {}--> {}".format(node,v))
else:
#CROSS EDGE
print("\tCross edge: {} --> {}".format(node,v))
clock += 1
ft[node] = clock
print("Finish time {}: {}".format(node,bclock))
return dt,ft

DFS edge
Forward edge
Back edge
Cross edge

Start time a: 1
DFS edge:a-->b
Start time b: 2

s,e = dfs_schema(G, 'a’, dt, df)

s,e = dfs_schema(G, 'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))

Edge classification

clock = 0

def dfs schema(G, node, dt, ft):
#clock: visit time (global variable)
#dt: discovery time
#ft: finish time
global clock

clock += 1
dt[node] = clock Start time a: 1
print(“Start time {}: {}".format(node, clock)) DFS edge:a-->b
Start time b: 2
for v in G.adj(node): ‘b -
ittty aa 0 DFS edge: b -->¢

#DFS VISIT edge
#visit the edge (node,v)
print("\tDFS edge: {} --> {}".format(node, v))
dfs_schema(G,v, dt, ft)
elif dt[node] > dt[v] and ft[v] == 0:
#BACK EDGE
#visit the back edge (node,v)
print("\tBack edge: {}--> {}".format(node,v))
elif dt[node] < dt[v] and ft[v] != 0:
#FORWARD EDGE
#visit the forward edge (node,v)
print("\tForward edge: {}--> {}".format(node,v))
else:
#CROSS EDGE
print("\tCross edge: {} --> {}".format(node,v))
clock += 1
ft[node] = clock
print("Finish time {}: {}".format(node,bclock))

return dt,ft s,e = dfs_schema(G, 'a’, dt, df)

s,e = dfs_schema(G, 'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))

DFS edge
Forward edge
Back edge
Cross edge

Edge classification

clock = 0

def dfs schema(G, node, dt, ft):
#clock: visit time (global variable)
#dt: discovery time
#ft: finish time
global clock

clock += 1
dt[node] = clock
print("Start time {}: {}".format(node, clock))

for v in G.adj(node):
if dt[v] == 0:
#DFS VISIT edge
#visit the edge (node,v)
print("\tDFS edge: {} --> {}".format(node, v))
dfs_schema(G,v, dt, ft)
elif dt[node] > dt[v] and ft[v] == 0:
#BACK EDGE
#visit the back edge (node,v)
print("\tBack edge: {}--> {}".format(node,v))
elif dt[node] < dt[v] and ft[v] != 0:
#FORWARD EDGE
#visit the forward edge (node,v)
print("\tForward edge: {}--> {}".format(node,v))
else:
#CROSS EDGE
print("\tCross edge: {} --> {}".format(node,v))
clock += 1
ft[node] = clock
print("Finish time {}: {}".format(node,bclock))
return dt,ft

DFS edge
Forward edge
Back edge
Cross edge

Start time a: 1

DFS edge:a-->b
Start time b: 2

DFS edge: b -->¢ 1
Start time c: 3 [7]

s,e = dfs_schema(G, 'a’, dt, df)

s,e = dfs_schema(G, 'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))

Edge classification

clock = 0

def dfs schema(G, node, dt, ft):
#clock: visit time (global variable)
#dt: discovery time
#ft: finish time
global clock

clock += 1
dt[node] = clock
print("Start time {}: {}".format(node, clock))

for v in G.adj(node):
if dt[v] == 0:
#DFS VISIT edge
#visit the edge (node,v)
print("\tDFS edge: {} --> {}".format(node, v))
dfs_schema(G,v, dt, ft)
elif dt[node] > dt[v] and ft[v] == 0:
#BACK EDGE
#visit the back edge (node,v)
print("\tBack edge: {}--> {}".format(node,v))
elif dt[node] < dt[v] and ft[v] != 0:
#FORWARD EDGE
#visit the forward edge (node,v)
print("\tForward edge: {}--> {}".format(node,v))
else:
#CROSS EDGE
print("\tCross edge: {} --> {}".format(node,v))
clock += 1
ft[node] = clock
print("Finish time {}: {}".format(node,bclock))
return dt,ft

Start time a: 1

DFS edge:a-->b
Start time b: 2

DFS edge: b -->¢
Starttime c: 3
Finish time c: 4

s,e = dfs_schema(G, 'a’, dt, df)

s,e = dfs_schema(G, 'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))

DFS edge
Forward edge
Back edge
Cross edge

Edge classification

clock = 0

def dfs schema(G, node, dt, ft):
#clock: visit time (global variable)
#dt: discovery time
#ft: finish time
global clock

clock += 1
dt[node] = clock
print("Start time {}: {}".format(node, clock))

for v in G.adj(node):
if dt[v] == 0:
#DFS VISIT edge
#visit the edge (node,v)
print("\tDFS edge: {} --> {}".format(node, v))
dfs_schema(G,v, dt, ft)
elif dt[node] > dt[v] and ft[v] == 0:
#BACK EDGE
#visit the back edge (node,v)
print("\tBack edge: {}--> {}".format(node,v))
elif dt[node] < dt[v] and ft[v] != 0:
#FORWARD EDGE
#visit the forward edge (node,v)
print("\tForward edge: {}--> {}".format(node,v))
else:
#CROSS EDGE
print("\tCross edge: {} --> {}".format(node,v))
clock += 1
ft[node] = clock
print("Finish time {}: {}".format(node,clock))
return dt,ft

Start time a: 1

DFS edge:a-->b
Start time b: 2

DFS edge: b -->¢
Starttime c: 3
Finish time c: 4
Finish time b: 5

s,e = dfs_schema(G, 'a’, dt, df)

s,e = dfs_schema(G, 'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))

DFS edge
Forward edge
Back edge
Cross edge

Edge classification P

s Cross edge

def dfs schema(G, node, dt, ft):
#clock: visit time (global variable)
#dt: discovery time
#ft: finish time
global clock

clock += 1
dt[node] = clock Start time a: 1
print(“Start time {}: {}".format(node, clock)) DFS edge:a-->b
Start time b: 2
for v in G.adj(node): 2 ImeDFS edge: b > ¢
if dt[v] == 0: Start time c: 3

sUES Lol) eage Finish time c: 4

#visit the edge (node,v) S .

print ("\tDFS edge: {} --> {}".format(node, v)) Finish time b: 5

dfs _schema(G,v, dt, ft) Forward edge: a--> ¢ A
elif dt[node] > dt[v] and ft[v] == 0O: [2, 5]

#BACK EDGE ‘s

#visit the back edge (node,v) dt[u] < dt[v], ft[v] #0

print("\tBack edge: {}--> {}".format(node,v)) ‘e

4

elif dt[node] < dt[v] and ft[v] != 0:

#FORWARD EDGE _
#visit the forward edge (node,v)
print("\tForward edge: {}--> {}".format(node,v))
else: [3’4]

#CROSS EDGE

print("\tCross edge: {} --> {}".format(node,v))
clock += 1
ft[node] = clock
print("Finish time {}: {}".format(node,bclock))

return dt, ft s,e = dfs_schema(G, 'a’, dt, df)

s,e = dfs_schema(G, 'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))

Edge classification m

def dfs schema(G, node, dt, ft):
#clock: visit time (global variable)
#dt: discovery time
#ft: finish time
global clock

clock += 1

dt[node] = clock Start time a: 1

print(“Start time {}: {}".format(node, clock)) DFS edge:a-->b
Start time b: 2

for v in G.adj(node): 2 ImeDFS edge: b > ¢

if dt[v] == 0: _ i :
#DFS VISIT edge Eitr?irs;:l?rﬁ: 034

#visit the edge (node,v)

print("\tDFS edge: {} --> {}".format(node, v)) Finish time b: 5
dfs_schema(G,v, dt, ft) Forward edge: a--> ¢

elif dt[node] > dt[v] and ft[v] == 0: DFS edge: a-->d
#BACK EDGE

#visit the back edge (node,v)
print("\tBack edge: {}--> {}".format(node,v))
elif dt[node] < dt[v] and ft[v] != 0:
#FORWARD EDGE
#visit the forward edge (node,v)
print("\tForward edge: {}--> {}".format(node,v))
else:
#CROSS EDGE
print("\tCross edge: {} --> {}".format(node,v))
clock += 1
ft[node] = clock
print("Finish time {}: {}".format(node,bclock))
return dt, ft

s,e = dfs_schema(G, 'a’, dt, df)

s,e = dfs_schema(G, 'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))

Edge classification P

s Cross edge

def dfs schema(G, node, dt, ft):
#clock: visit time (global variable)
#dt: discovery time
#ft: finish time
global clock

clock += 1

dt[node] = clock Start time a: 1

print(“Start time {}: {}".format(node, clock)) DFS edge:a-->b
Start time b: 2

for v in G.adj(node): 2 ImeDFS edge: b > ¢

if dt[v] == 0O: _ i :
Start time c: 3
#DFS VISIT edge Finish time c: 4

#visit the edge (node,v)

print("\tDFS edge: {} --> {}".format(node, v)) Finish time b: 5
dfs_schema(G,v, dt, ft) Forward edge: a--> ¢

elif dt[node] > dt[v] and ft[v] == 0: DFS edge: a-->d
#BACK EDGE Start time d: 6

#visit the back edge (node,v)
print("\tBack edge: {}--> {}".format(node,v))
elif dt[node] < dt[v] and ft[v] != 0:
#FORWARD EDGE
#visit the forward edge (node,v)
print("\tForward edge: {}--> {}".format(node,v))
else:
#CROSS EDGE
print("\tCross edge: {} --> {}".format(node,v))
clock += 1
ft[node] = clock
print("Finish time {}: {}".format(node,bclock))
return dt,ft

s,e = dfs_schema(G, 'a’, dt, df)

s,e = dfs_schema(G, 'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))

Edge classification

clock = 0

def dfs schema(G, node, dt, ft):
#clock: visit time (global variable)
#dt: discovery time
#ft: finish time
global clock

clock += 1
dt[node] = clock
print("Start time {}: {}".format(node, clock))

for v in G.adj(node):
if dt[v] == 0:
#DFS VISIT edge
#visit the edge (node,v)
print("\tDFS edge: {} --> {}".format(node, v))
dfs_schema(G,v, dt, ft)
elif dt[node] > dt[v] and ft[v] == 0:
#BACK EDGE _
#visit the back edge (node,v)
print("\tBack edge: {}--> {}".format(node,v))
elif dt[node] < dt[v] and ft[v] != 0:
#FORWARD EDGE
#visit the forward edge (node,v)
print("\tForward edge: {}--> {}".format(node,v))
else:
#CROSS EDGE
print("\tCross edge: {} --> {}".format(node,v))
clock += 1
ft[node] = clock
print("Finish time {}: {}".format(node,bclock))
return dt,ft

DFS edge
Forward edge
Back edge
Cross edge

Start time a: 1
DFS edge:a-->b
Start time b: 2
DFS edge: b -->¢
Start time c: 3
Finish time c: 4
Finish time b: 5
Forward edge: a--> ¢
DFS edge: a -->d
Start time d: 6
Back edge: d--> a

s,e = dfs_schema(G, 'a’, dt, df)

s,e = dfs_schema(G, 'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))

Edge classification

clock = 0

def dfs schema(G, node, dt, ft):
#clock: visit time (global variable)
#dt: discovery time
#ft: finish time
global clock

clock += 1
dt[node] = clock Start time a: 1
print(“Start time {}: {}".format(node, clock)) DFS edge:a-->b
Start time b: 2
for v in G.adj(node): 2 ImeDFS edge: b > ¢
if dt[v] == 0: Start time c: 3

#DFS VISIT edge

#visit the edge (node,v) Finish time c: 4

print ("\tDFS edge: {} --> {}".format(node, v)) Finish time b: 5

dfs schema(G,v, dt, ft) Forward edge: a--> ¢
elif dt[node] > dt[v] and ft[v] == 0: DFS edge: a-->d

#BACK EDGE Start time d: 6

#visit the back edge (node,v) Back edge: d--> a

print("\tBack edge: {}--> {}".format(node,v)) Cross edge: d --> b

elif dt[node] < dt[v] and ft[v] != 0:
#FORWARD EDGE
#visit the forward edge (node,v)
print("\tForward edge: {}--> {}".format(node,v))
else:

#CROSS EDGE _
print("\tCross edge: {} --> {}".format(node,v))

clock += 1

ft[node] = clock

print("Finish time {}: {}".format(node,bclock))

return dt, ft s,e = dfs_schema(G, 'a’, dt, df)

s,e = dfs_schema(G, 'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))

DFS edge
Forward edge
Back edge
Cross edge

Ogthe
4

gwise
-

Edge classification

clock = 0

def dfs schema(G, node, dt, ft):
#clock: visit time (global variable)
#dt: discovery time
#ft: finish time
global clock

clock += 1
dt[node] = clock Start time a: 1
print(“Start time {}: {}".format(node, clock)) DFS edge:a-->b
Start time b: 2
for v in G.adj(node): 2 ImeDFS edge: b > ¢
if dt[v] == 0: Start time c: 3

#DFS VISIT edge

#visit the edge (node,v) Finish time c: 4

print("\tDFS edge: {} --> {}".format(node, v)) Finish time b: 5

dfs_schema(G,v, dt, ft) Forward edge: a--> ¢
elif dt[node] > dt[v] and ft[v] == 0O: DFS edge: a -->d

#BACK EDGE Start time d: 6

#visit the back edge (node,v) Back edge: d--> a

print("\tBack edge: {}--> {}".format(node,v)) Cross edge: d --> b
elif dt[node] < dt[v] and ft[v] != 0: Finish time d: 7

#FORWARD EDGE

#visit the forward edge (node,v)

print("\tForward edge: {}--> {}".format(node,v))

else:

#CROSS EDGE

print("\tCross edge: {} --> {}".format(node,v))
clock += 1
ft[node] = clock a=
print("Finish time {}: {}".format(node,bclock))

return dt, ft s,e = dfs_schema(G, 'a’, dt, df)

s,e = dfs_schema(G, 'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))

DFS edge
Forward edge
Back edge
Cross edge

Edge classification

clock =

def dfs schema(G, node, dt, ft):
#clock: visit time (global variable)
#dt: discovery time
#ft: finish time
global clock

clock += 1
dt[node] = clock
print("Start time {}: {}".format(node, clock))

for v in G.adj(node):
if dt[v] == 0:
#DFS VISIT edge
#visit the edge (node,v)
print("\tDFS edge: {} --> {}".format(node, v))
dfs_schema(G,v, dt, ft)
elif dt[node] > dt[v] and ft[v] ==
#BACK EDGE
#visit the back edge (node,v)
print("\tBack edge: {}--> {}".format(node,v))
elif dt[node] < dt[v] and ft[v] != 0:
#FORWARD EDGE
#visit the forward edge (node,v)
print("\tForward edge: {}--> {}".format(node,v))
else:
#CROSS EDGE
print("\tCross edge: {} --> {}".format(node,v))
clock += 1
ft[node] = clock =
print("Finish time {}: {}".format(node,bclock))
return dt, ft

DFS edge
Forward edge
Back edge
Cross edge

Start time a: 1
DFS edge:a-->b
Start time b: 2
DFS edge: b -->¢
Starttime c: 3
Finish time c: 4
Finish time b: 5
Forward edge: a--> ¢
DFS edge: a -->d
Start time d: 6
Back edge: d--> a
Cross edge: d > b
Finish time d: 7
Finish time a: 8

s,e = dfs_schema(G, 'a’, dt, df)

s,e = dfs_schema(G, 'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))

Edge classification

clock =

def dfs _schema(G, node, dt, ft):

#clock: visit time (global variable)
#dt: discovery time

#ft: finish time

global clock

clock += 1 _
dt[node] = clock
print("Start time {}: {}".format(node, clock))

for v in G.adj(node):
if dt[v] == 0:
#DFS VISIT edge
#visit the edge (node,v)
print("\tDFS edge: {} --> {}".format(node, v))
dfs_schema(G,v, dt, ft)
elif dt[node] > dt[v] and ft[v] ==
#BACK EDGE
#visit the back edge (node,v)
print("\tBack edge: {}--> {}".format(node,v))
elif dt[node] < dt[v] and ft[v] != 0:
#FORWARD EDGE
#visit the forward edge (node,v)
print("\tForward edge: {}--> {}".format(node,v))
else:
#CROSS EDGE
print("\tCross edge: {} --> {}".format(node,v))
clock += 1
ft[node] = clock
print("Finish time {}: {}".format(node,bclock))
return dt,ft

Start time a: 1

DFS edge:a-->b

Start time b: 2

DFS edge: b -->¢

Starttime c: 3
Finish time c: 4
Finish time b: 5

Forward edge: a--> ¢
DFS edge: a -->d

Start time d: 6

Back edge: d--> a
Cross edge: d > b

Finish time d: 7
Finish time a: 8
Start time e: 9

s,e
s,e

print("Discovery times:{}".format(s))
print("Finish times:

dfs schema(G, 'a’,
dfs schema(G, 'e’,

dt, df)
dt, df)

{}".format(e))

DFS edge
Forward edge
Back edge
Cross edge

Edge classification

clock =

def dfs schema(G, node, dt, ft):
#clock: visit time (global variable)
#dt: discovery time
#ft: finish time
global clock

clock += 1
dt[node] = clock
print("Start time {}: {}".format(node, clock))

for v in G.adj(node):
if dt[v] == 0:
#DFS VISIT edge
#visit the edge (node,v)
print("\tDFS edge: {} --> {}".format(node, v))
dfs_schema(G,v, dt, ft)
elif dt[node] > dt[v] and ft[v] ==
#BACK EDGE
#visit the back edge (node,v)
print("\tBack edge: {}--> {}".format(node,v))
elif dt[node] < dt[v] and ft[v] != 0:
#FORWARD EDGE
#visit the forward edge (node,v)
print("\tForward edge: {}--> {}".format(node,v))
else:
#CROSS EDGE
print("\tCross edge: {} --> {}".format(node,v))
clock += 1
ft[node] = clock
print("Finish time {}: {}".format(node,bclock))
return dt,ft

DFS edge
Forward edge
Back edge
Cross edge

Start time a: 1
DFS edge:a-->b
Start time b: 2
DFS edge: b -->¢
Start time c: 3
Finish time c: 4
Finish time b: 5
Forward edge: a--> ¢
DFS edge: a -->d
Start time d: 6
Back edge: d--> a
Cross edge: d > b
Finish time d: 7
Finish time a: 8
Starttime e: 9
Cross edge: e --> ¢

.0
4
IlIllI.llls
otherwise_

[9,] [3,4]

s,e = dfs_schema(G, 'a’, dt, df)

s,e = dfs_schema(G, 'e', dt, df)
print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))

Edge classification

clock =

def dfs schema(G, node, dt, ft):
#clock: visit time (global variable)
#dt: discovery time
#ft: finish time
global clock

clock += 1
dt[node] = clock
print("Start time {}: {}".format(node, clock))

for v in G.adj(node):

if dt[v] == 0:
#DFS VISIT edge
#visit the edge (node,v)
print("\tDFS edge: {} --> {}".format(node, v))
dfs_schema(G,v, dt, ft)

elif dt[node] > dt[v] and ft[v] ==
#BACK EDGE
#visit the back edge (node,v)
print("\tBack edge: {}--> {}".format(node,v))

elif dt[node] < dt[v] and ft[v] != 0:
#FORWARD EDGE
#visit the forward edge (node,v) _
print("\tForward edge: {}--> {}".format(node,v))

else:
#CROSS EDGE
print("\tCross edge: {} --> {}".format(node,v))
clock += 1

ft[node] = clock _
print("Finish time {}: {}".format(node,bclock))
return dt, ft

Start time a: 1
DFS edge:a-->b
Start time b: 2
DFS edge: b -->c¢
Starttime c: 3
Finish time c: 4
Finish time b: 5
Forward edge: a--> ¢
DFS edge: a -->d
Start time d: 6
Back edge: d--> a
Cross edge: d > b
Finish time d: 7
Finish time a: 8
Start time e: 9
Cross edge: e --> ¢
Finish time e: 10

DFS edge
Forward edge
Back edge
Cross edge

)»‘

9,10 3,4]

Discovery times:{'a": 1, 'b": 2, 'c": 3,'d": 6, 'e": 9}
Finish times: {'a": 8, 'b" 5, 'c: 4,'d: 7, 'e": 10}

s,e
s,e

dfs schema(G, 'a’,
dfs schema(G, 'e’,

dt, df)
dt, df)

print("Discovery times:{}".format(s))
print("Finish times: {}".format(e))

Edge classification

Why are we classifying edges?

We can prove properties on the type of edges and use these properties
to build better algorithms

Theorem
In each DFS visit of a graph G = (V, E), for each pair of nodes
u,v € V, only one of the following conditions is true:
@ The intervals [dt[u], ft{u]] e [dt[v], ft[v]] are non-overlapping;
u, v are not descendant of each other in the DF forest
o Interval [dt[u], ft{u]] is completely contained in [dt[v], ft[v]];
u is descendant of v in a DF tree

o Interval [dt[v], ft[v]] is completely contained in [dt[u], ft[u]];
v is descendant of u in a DF tree

NOTE in the DFS visit:
[1,8] completely contains [2,5] » B descends from A
[1,8] completely contains [3,4] » C descends from A
[9,10] does not overlap [2,5], [6,7] » E-B E-D are not descendans

Intervals describe the relationship between nodes

DFS edge .

Forward edge [

Back edge 5' :

Cross edge 5@‘, @

Cycle detection Forteie

Cross edge

f— Theorem \

A graph G contains a cycle if a back edge is found when a DFS is

performed on G.
\ 7

- Informal proof \

o if: If there is a cycle, let u be the first node of it that is
visited. Given that u belongs to the cycle, there is an edge
(v, u) in the cycle. Given that v belongs to the cycle, there is
a path from u to v. So (v, u) is a back edge.

e only if: if there is a back edge (u,v), where v is an ancestor
of u, then there is a path from v to v and an edge from u to v,
thus there is a cycle.

Cycle detection Forteie

Cross edge

f— Theorem \

A graph G contains a cycle if a back edge is found when a DFS is

performed on G.
\ 7

- Informal proof \

o if: If there is a cycle, let u be the first node of it that is
visited. Given that u belongs to the cycle, there is an edge
(v, u) in the cycle. Given that v belongs to the cycle, there is
a path from u to v. So (v, u) is a back edge.

e only if: if there is a back edge (u,v), where v is an ancestor
of u, then there is a path from v to v and an edge from u to v,
thus there is a cycle.

Cycle detection

~~ Theorem

A graph G contains a cycle if a back edge is found when a DFS is

performed on G.
\

- Informal proof

o if: If there is a cycle, let u be the first node of it that is
visited. Given that u belongs to the cycle, there is an edge
(v, u) in the cycle. Given that v belongs to the cycle, there is
a path from u to v. So (u,v) is a back edge.

e only if: if there is a back edge (u,v), where v is an ancestor
of u, then there is a path from v to u and an edge from u to v,
thus there is a cycle.

DFS edge
Forward edge
Back edge
Cross edge

NO Cycle!

1,] 3, 4]

Tree edge dt[v] ==
Back edge: dt[u] > dt[v] and ft[v] =0
Forward edge: dt[u] < dt[v] and ft[v] # 0

Cross edge: otherwise

DFS edge

Cycle detection Farwerd s

Back edge
Cross edge

~~ Theorem

A graph G contains a cycle if a back edge is found when a DFS is
performed on G.

\

Cycle!

- Informal proof

o if: If there is a cycle, let u be the first node of it that is
visited. Given that u belongs to the cycle, there is an edge
(v, u) in the cycle. Given that v belongs to the cycle, there is
a path from u to v. So (u,v) is a back edge.

e only if: if there is a back edge (u,v), where v is an ancestor
of u, then there is a path from v to u and an edge from u to v,
thus there is a cycle.

[1.] [3.]

Tree edge dit[v] ==
Back edge: dt[u] > dt[v] and ft[v] =0
Forward edge: dt[u] < dt[v] and ft[v] # 0

Cross edge: otherwise

DFS edge

Cycle detection: the code ot

Cross edge
def detect cycle(G):
dt = dict()
ft = dict()
global clock
St hns oycle(6. node, dF, 1) simplified version of the code seen before.
Leracks WISLE CIee (planak vaclaliic) We just care about forward and back edges
#dt: discovery time
#ft: finish time
global clock
clock += 1 2
dt[node] = clock print("Does G have a cycle? {}".format(detect cycle(G)))
for v in G.adj(node):
if dt[v] == 0:

#DFS VISIT edge
if has cycle(G,v, dt, ft):
return True Does G have a cycle? False

elif dt[node] > dt[v] and ft[v] == 0:

#BACK EDGE

#CYCLE FOUND!!!!

print("Back edge: {} --> {}".format(node,v))

return True
Note we are not interested [1, 6] [3, 4]
1in forward and cross edges

clock += 1
ft[node] = clock

return False -

for node in G.node iterator(): Back edge: c --> a

dt[node] 0

Fiiriode] = 8 Does G have a cycle? True
clock = 1
for u in G.node iterator():

if ft[u] == 0:

if has cycle(G,u, dt, ft):
return True

return False

Comment on edge classification

DFS edge
Forward edge
Back edge
Cross edge

Tree edge
Back edge:
Forward edge:
Cross edge:

dtfv] ==
dt{u] > dt[v] and ft{v] =0
dt{u] < dt[v] and ft[v] # 0
otherwise

1. ifdtfv]==0, it is the first time we see v in the
DFS search. DFS Tree edge!

Comment on edge classification

DFS edge
Forward edge
Back edge
Cross edge

Tree edge
Back edge:
Forward edge:
Cross edge:

dtjv] == 0
dt{u] > dt[v] and ft{v] =0
dt{u] < dt[v] and ft[v] # 0
otherwise

q [X+K,0]

‘ . [X,0]

[X+K+T,0]

1. ifdtfv]==0, it is the first time we see v in the
DFS search. DFS Tree edge!

2. if difu] > dt[v] the DFS search found u after v
and since the DFS visit started from v is not
complete (ftfv]=0), v is a descendant of u.
[Path: v= X » u]. Back edge!

Comment on edge classification

DFS edge
Forward edge
Back edge
Cross edge

Tree edge
Back edge:
Forward edge:
Cross edge:

dtfv] ==
dt{u] > dt[v] and ft{v] =0
dt[u] < dt[v] and ft[v] # 0
otherwise

. , [X+K+TY]
X0] * 4

[X+K,W]

1. ifdtfv]==0, it is the first time we see v in the
DFS search. DFS Tree edge!

2. if difu] > dt[v] the DFS search found u after v
and since the DFS visit started from v is not
complete (ftfv]=0), v is a descendant of u.
[Path: v= X » u]. Back edge!

3. if dtfu] < dt[v] the DFS search found v after u,
therefore v descends from u. Since the visit of
v is complete (ft[v] != 0) this is a Forward
edge! [Path: u =Y » V]

Topological sorting

Definition

Given a DAG G, a topological sort of G is a linear ordering of its
nodes such that if (v, v) € E, then u appears before v in the ordering

Notes:

@ There could be several topological sorts

e If there is a cycle, no topological sort is possible We can think at

these DAGs as
a dependency
Q-0-0 O-® araphs. If v
have edge x-->y
0 o activity x has to
be completed
o before y starts.

Note: Edges always from left to right: correct
order!

Topological sorting

- Problem

Write an algorithm that takes a DAG G as input and returns a
topological sort of G as output.

How would you solve this problem?
\

1,6] 3, 4]

Topological sorting

- Problem "

Write an algorithm that takes a DAG G as input and returns a
topological sort of GG as output.

How would you solve this problem?
. J

(Naive solution j

e Find a node u with no incoming edges
e Append u to a list; remove u, together with all its edges

@ Repeat the procedure until all nodes have been removed

(1,6] (3, 4]

Topological sorting

Naive solution

e Find a node u with no incoming edges

e Append u to a list; remove u, together with all its edges

@ Repeat the procedure until all nodes have been removed

-0 ©
‘9

Output:

Output: 1 /
7

)
©
®

Output: 1 3

Output: 13 5

Output: 1352

®

Output: 13524

/

Picking 2 or 3 is equivalent (i.e. originates
equivalent topological orderings)

Note: we are destroying the graph!!!
We could make a copy of the graph
first, but this is not a great solution...

Topological sorting

[Algorithm]

e Execute a DFS in which the "visit" operation consists of adding
the node at the head of a list "at finish time" (post-order)

@ Return the list of nodes obtained in this way

[Output J

e The sequence of nodes, sorted by decreasing finish time

(Why does it work?]

@ When a node is "finished", all its descendants have been discovered
and added to the list.

e By adding the node in front of the list, nodes are sorted correctly
e We use a stack instead

Topological sorting: example

Topological sorting: example

Topological sorting: example

Topological sorting: example

3.4

Stack = { e }

Topological sorting: example

Topological sorting: example

Topological sorting: example

[6,]
bl

3.4

Stack = { ¢, e }

Topological sorting: example

6,]

Topological sorting: example

6,]

3.4

Stack = { d, c, e }

Topological sorting: example

[6,9]

Stack = { b, d, ¢, e }

Topological sorting: example

[6,9]

el

3,4]

Stack = { a, b, d, ¢, e }

Topological sorting: example

[6,9]

3.4

Stack = { a, b, d, ¢, e }

for v in G.adj(node):
if dt[v] == 0O:

Stack = { }

What happens if nodes are chosen in a
different order in the DFS visit?

Topological sorting: example

6,9]

[1,10]

[3, 4]

Stack = { a, b, d, ¢, e }
Stack ={a, c, e, b, d}

Stack = { a, b, d, c, e }

NOTE:
The advantage of this algorithm is that we do not need to start from (and
therefore find) the node with in-degree = 0

What happens if nodes are chosen in a
different order in the DFS visit?

Topological sorting: the code

def top sort(G): Note:
S.='Stack() We do not need to compute
visited = set() discovery/finish time

for u in G.node iterator():
if u not in visited:

top_sortRec(G, u, visited, S)
return S ° o

def top sortRec(G, u, visited, S):

visited.add(u)
for v in G.adj(u): °
if v not in visited:
top sortRec(G,v,visited,S)

S.push(u) _

G = Graph()
for u,v,c in [('a c','black’), ('a','b*, 'black"), ('c’,'e"',"'btack’), (‘a';'e', "black'),
(*bldY; tblack)]:

G.insert _edge(u,v)
print(top _sort(G))

Stack(a | b | d | c | e)

Topological sorting: the code

def top sort(G): Note:
S = Stack() We do not need to compute
visited = set() discovery/finish time
for u in G.node iterator():
if u not in visited:
top sortRec(G, u, visited, S)
return S

def top sortRec(G, u, visited, S):
visited.add(u)
for v in G.adj(u):
if v not in visited:
top sortRec(G,v,visited,S)

S.push(u) _ insert the node in the stack “at finish time”

G = Graph()
for u,v;c in [(’a','b', ‘black'), (‘'a’,%c",‘'black"), (‘'a’,'e*, '"black!),
(lcy ek, thlack”), ((XbY, d2, hYack), (te’;:'hY, “black™)]s

G.insert edge(u,v)
print(top sort(G))

Stack(a | c e | b | d)

Note:

This algorithm has a lot of
applications (es. compilation
dependencies in makefile)

Strongly connected graphs and components

f|\ Definitions ﬁ

-

e A directed graph G = (V, F) is strongly connected iff every node is
reachable from every other node

e A directed graph G' = (V', E’') is a strongly connected component
iff G’ is a connected and maximal subgraph of GG

o G isasubgraphof G (G'CG)if VCVand E'CE

e (' is maximal iff there is not other graph G” of G such that G” is
strongly connected and larger than G’ (i.e. G' C G” C G)

Strongly connected graphs and components

Question

e What are the strongly connected components of this graph?

(<)

</

Strongly connected graphs and components

Question

e What are the strongly connected components of this graph?

Note:

This graph is not strongly connected
(ex. | cannot reach a from c nor from b)
but, there are 3 strongly connected
components...

def

Naive (and wrong!) solution

def
e Just apply the CC algorithm to directed graphs

@ The result depends on the starting node

cc(G):
ids = dict()
for node in G.node iterator():
ids[node] = ©
counter = 0
for u in G.node iterator():
if ids[u] == 0:
counter += 1
ccdfs(G, counter, u, ids)
return (counter, ids)

ccdfs(G, counter, u, ids):
ids[u] = counter
for v in G.adj(u):
if ids[v] == 0:
ccdfs(G, counter, v, ids)

In a nutshell: perform a DSF visit,
assign to each visit the same
component number until all nodes
visited

DFS visit starting from C, DFS visit starting from B, DFS visit starting from A.

then from B, then from A then from A. Wrong Wrong result!
result!

Strongly connected components algorithm

[Kosaraju Algorithm (1978)

e Perform a DFS of G
e Compute the transpose graph Gp

@ Run the connected component algorithm on Gy, examining the
nodes in decreasing finish time w.r.t. the first visit

e Returns the identifiers of the nodes

def scc(G):
#performs a topological sort of G
S = top sort(G)
#Transposes G
GT = transpose(G) -
#modified version of CC algo that
#gets starting nodes off the stack S
counter, ids = cc(GT,S) -

Topological sorting of general graphs

By applying the topological sort algorithm on a general graph, we are
sure that:

e if an edge (u,v) does not belong to a cycle, than u appears before
v in the sorted sequence

NOTE: we might

have cycles, so this
does not necessarily
mean that we obtain a
(2,11] [3,10] topological sort!!!
(2,71

We use thus topsort () to obtain nodes in decreasing finish time.

But the important

thing is that all the
[1,8] nodes before the

cycle(s) and after the

cycles(s) are put in the

correct topological

sort (at least for some
[3,6] elements)).

[4,5]

[7,8] [4,9]

Stack = { a, b, ¢, e, d, £ }
Stack = {a, b,f,c,e,d}

Topological sorting of general graphs

By applying the topological sort algorithm on a general graph, we are
sure that:

e if an edge (u,v) does not belong to a cycle, than u appears before
v in the sorted sequence

We use thus topsort () to obtain nodes in decreasing finish time.

[13,14]

[4,5] [3,6]

Stack = {a, b,f,g,c,e,d}

g comes after f, in the next visit
with the transpose g will not be

reachable from f unlike c,e,d

NOTE: we might

have cycles, so this
does not necessarily
mean that we obtain a
topological sort!!!

But the important
thing is that all the
nodes before the
cycle(s) and after the
cycles(s) are put in the
correct topological
sort (at least for some
elements!).

Transpose of a graph

Given a graph G = (V, E), the transpose graph Gy = (V, E7) has the
same nodes, while edges are directed in the opposite way:

Er = {(u,v) | (v,u) € E}

def transpose(G):

tmpG = Graph()
for u in G.node iterator(): Note: &
for v in G.adj(u): /:an;rytd:ggng'fh?f
tmpG.insert edge(v,u) method adds the transpose(G)
return tmpG nodes to the Graph
before adding the
edge

Transpose of a graph

Given a graph G = (V, E), the transpose graph Gy = (V, E7) has the
same nodes, while edges are directed in the opposite way:

Er = {(uav) | (vau) = E}

def transpose(G): _
tmpG = Graph() [Computational cost: O(m + n) J
for u in G.node iterator():
for v in G.adj(u): o O(n) nodes added

tmpG.insert edge(v,u)

return tmpG e O(m) edges added

e Each add operation costs O(1)

Modified connected components

Instead of examining the nodes in an arbitrary order, this version of cc(G,S) examines them in the order in
which they are stored in the stack S.

def cc(G, S): <:I now we have the stack in input
ids = dict()
for node in G.node iterator():
ids[node] = ©
counter = 0
while len(S) > 0:
u = S.pop()
if ids[u] ==
counter += 1
ccdfs(G, counter, u, ids)
return (counter, ids)

<:| instead of looping through all nodes in a random way we get
them following the order of the stack

def ccdfs(G, counter, u, ids): Computational cost: O(m + n)

ids[u] = counter
for v in G.adj(u): Each phase requires O(m + n)
if ids[v] == 0:
ccdfs(G, counter, v, ids)

def scc(G):

. . #performs a topological sort of G
PUtt|ng |t a” together S = top _sort(G)

#Transposes G
GT = transpose(G)
#modified version of CC algo that
#gets starting nodes off the stack S
counter, ids = cc(GT,S)

° e top_sort(G)
O 5) =)
0 e [4,5] 3. 6]

transpose(G) Stack = { a, b, f, c, e, d}

cc(GT, S)

| pull out nodes

from the stack to start
cc from each (if their
Stack = { a, b, f, ¢, e, d } S
component id ==0)
Output:
Components: 3

Ids:{'b": 2,'a": 1,'d" 3, 'c": 3,'e" 3, 'f: 3}

Exercise

0 e top_sort(G)
Gl ’e) ?

(O)+—]
transpos?

9

Output:
Components: 4

Ids:{'b": 2,'a": 1,'d" 3,'c": 3,'e" 3, 'f": 3,'g": 4}

Proof of correctness...

(Component Graph V. = (V,, E,.) G=(V,E)]

o V. ={C,Cq,...,Ck}, where Cj is the i-th SCC of G
@ E. = {(Cy,Cy)|3(u,v) € EAu € Cy Av € Cy}

[Questions J

o What is the relationship
between the SCCs of G and
the SCCs of Gp? SCC(G) = [SCC(G,)];

@ Is the component graph
acyclic?

YES. Otherwise any cycle would

be a bigger SCC. NO CYCLES:

top_sort
correctly sorts
the components

Proof of correctness...

[Discovery time and finish for the component graph]

dt(C) = min{ dt(u)|u € C'}
JH(C) = max{fi(u)|u € C}

These discovery/finish times correspond to the discovery/finish time of
the first node to be visited in component C'

dt(A) = 1
dt(B) = 2
dt(CDEF) = 3

ft(A) = 12

7,9] 4,9] ft(B) =1
ft(CDEF) =10

Stack = { a, b, c, e, d, £}

Proof of correctness...

~ Theorem

Let C' and C’ be two distinct SCCs in the directed graph G = (V, E).
- If there is an edge (C,C") € E,, then ft(C) > ft(C").

[2 11] '/\.-“ [1()].].] ./—\'“A“"""...
[1, 12.1 7 / ...‘," /

[9,12]

oo
o

[4,5] .

If | start the visit from a node N in C then | visit all the nodes of C’ first and then | complete the visit on
N (hence finish time of N is higher)

If | start the visit from a node K in C’ then when the nodes of the compoent are all finished | will have
to restart from a node in the component C (hence finish time of K will be higher)

Proof of correctness...

— Corollary ~
Let Cy and C, be two distinct SCCs in the directed graph G =
(V,E).

If there is an edge (u,v) € FE¢ with v € C, and v € C,, then

k. ft(cu) < ﬂ(Cv).

(u,v) € By = ey
(v,u) € E = !
(Cv,cu) € Ec =
f(Cy) > f(Cu) =
f(Cu) < fi(Cy)

"

Proof of correctness...

~ Corollary

Let Cy and C}, be two distinct SCCs in the directed graph G =
(V,E).

If there is an edge (u,v) € E; with v € Cy and v € C,, then
fi(Cu) < fH(Cy).

(b,a) € E; =

(a,b) e E=>

(Cq,Ch) € E. =

12 = ft(Ca) > ft(b) =11=
11 = f(Cy) < fi(Ca) =

Proof of correctness...

e If the component C, and the component C, are connected by an
edge (u,v) € Ey, then:
e From the corollary, ft(Cy) < ft(Cy)
e From the algorithm, the visit of C,, will start before the visit of C,,

@ There is no path between C, and C, in Gt (otherwise the graph
would be cyclic)

e From the algorithm, the visit of ', will not reach C,,

In other words, cc() will correctly assign the component identifiers to
nodes.

[10. 11] A

If you are starting to have some fun...

Good news... there are at least 120+ other algorithms on graphs!

Pages in category "Graph algorithms"

The following 128 pages are in this category, out of 128 total. This list may not reflect recent changes (learn more).

A
» A* search algorithm
« Alpha-beta pruning
« Aperiodic graph

B
* B*
Barabasi-Albert model
Belief propagation
Bellman—Ford algorithm
Bianconi-Barabasi model
Bidirectional search
Bortivka's algorithm
Bottleneck traveling salesman problem
Breadth-first search

Bron—Kerbosch algorithm
Bully algorithm

Centrality

Chaitin's algorithm
Christofides algorithm
Clique percolation method
Closure problem

» Color-coding

« Contraction hierarchies
« Courcelle’s theorem
« Cuthill-McKee algorithm

D

Floyd-Warshall algorithm
Force-directed graph drawing .
Ford—Fulkerson algorithm

Fringe search

G N

Gallai-Edmonds decomposition
« Girvan-Newman algorithm

Goal node (computer science)
« Gomory-Hu tree

Graph bandwidth

« Graph edit distance

Graph embedding

Graph isomorphism

Graph isomorphism problem

Graph kernel
Graph reduction
Graph traversal

I

Hall-type theorems for hypergraphs

Havel-Hakimi algorithm

HCS clustering algorithm

Hierarchical closeness

Hierarchical clustering of networks s
Hopcroft-Karp algorithm

Iterative deepening A*

Initial attractiveness

_lterative comoression

METIS

Minimax

Minimum bottleneck spanning tree
Misra & Gries edge coloring algorithm

Nearest neighbour algorithm

Network flow problem

Network simplex algorithm
Nonblocking minimal spanning switch

PageRank

Parallel all-pairs shortest path algorithm
Parallel breadth-first search

Path-based strong component algorithm
Pre-topological order

Prim's algorithm

Proof-number search

Push-relabel maximum flow algorithm

Reverse-delete algorithm
Rocha-Thatte cycle detection algorithm

Seidel's algorithm

Semantic Brand Score
Sethi-Uliman algorithm
Shortest Path Faster Algorithm
SMA*

