
Scientific Programming:
Algorithms (part B)

Programming paradigms

Luca Bianco - Academic Year 2020-21
luca.bianco@fmach.it
[credits: thanks to Prof. Alberto Montresor]

Problems and solutions

Classification of problems

Classification of problems

Mathematical characterization

Algorithmic techniques

(ex. QuickSort)

Algorithmic techniques

General approach

1. Define the solution
(better, the value of the
solution) in recursive
terms

2. Depending on if we can
build the solution from
repeated subproblems
we apply different
techniques

3. From DP and
memoization (if we do
not need to solve all the
subproblems, but just a
subset) we get a
solution table that we
need to analyze to get a
numeric solution or to
build the optimal
solution

Dominoes

Any ideas on how to solve this problem?

Dominoes

n= 0, only one
possibility: no tiles.
n=1, only 1 possibility,

vertical tile
2xn 2xn

n -1 n -2

Dominoes

We sum because the
two cases originate
different solutions2xn 2xn

n -1 n -2

Dominoes

N = 4 (i.e. 2x4) → 5 possible dispositions (n+1)th Fibonacci’s number

Dominoes: recursive algorithm

Complexity

What is the complexity of dominoes?

Theorem not seen:

*

cost of if and sum

Recursive tree

How to avoid computing the same thing over and
over again: Dynamic programming

How to avoid computing the same thing over and
over again: Dynamic programming

An iterative solution

How about the space complexity?
What is the size of res?

Ideas on how to improve this?

base cases, stored immediately

output

*

Another iterative solution

*

Uniform vs Logarithmic cost model

where

Careful there: the
Fibonacci’s
number grows
exponentially!

golden ratio

*

Uniform vs Logarithmic cost model

where

the complexity seen before needs to be multiplied by n

Careful there: the
Fibonacci’s
number grows
exponentially!

This affects the
complexity of
summing two
consecutive
Fibonacci
numbers

golden ratio

Uniform vs Logarithmic cost model

Uniform vs Logarithmic cost model

1 2 3 5 8 ... 1134903170
Elapsed time: 659.3645467758179s

1 2 3 5 8 … 1134903170
Elapsed time: 0.0007071495056152344s

1 2 3 5 8 … 1134903170
Elapsed time: 0.0011742115020751953s

Hateville

Hateville

Examples:

remember the
additional constraint
that indexes must not
be consecutive

summing all even or all odds does not
work!

Hateville

Hateville

Hateville

Hateville

Hateville

+ D[i]

Hateville

+ D[i]

Hateville: recursive algorithm?

DP Table

Iterative solution

Iterative solution

Build solution(i) recursively as:

solution(i-2) AND add index i to a list
or

solution(i−1)

Building the solution

Complexity

What is the complexity of build_solution?

What is the complexity of hateville?

Exercise:
write hateville with S(n) = O(1)
(without reconstructing the solution)

Knapsack

}

Knapsack

S = {1}

S = {2,3}

A greedy approach would not
work because in the second
case we would pick item 1

Knapsack

i ≤ n
c ≤ C

Knapsack

The capacity and profit do not
change

Subtract the weight of the item
from the capacity and add its
profit

Knapsack

The capacity and profit do not
change

Subtract the weight of the item
from the capacity and add its
profit

Knapsack

to enforce NOT
choosing objects
that make capacity
negative

Knapsack: the code

bottom-up

result is here!

inizialize a n+1 x C+1 matrix full of zeros

DP[1][1]
not_taken = DP[0][1] = 0
taken = DP[0][1- w[0]] + p[0] → 4 > 1 → - ∞
max(0, -∞) = 0

Knapsack: the code

bottom-up

result is here!

inizialize a n+1 x C+1 matrix full of zeros

DP[1][4]
not_taken = DP[0][4] = 0
taken = DP[0][4- w[0]] + p[0] → 4 ≤ 4 → 0 + p[0] = 10
max(0, 10) = 10

Knapsack: the code

bottom-up

result is here!

inizialize a n+1 x C+1 matrix full of zeros

DP[2][2]
not_taken = DP[1][2] = 0
taken = DP[1][2- w[1]] + p[1] → 2 ≤ 2 → 0 + p[1] = 7
max(0, 10) = 7

Knapsack: the code

bottom-up

result is here!

inizialize a n+1 x C+1 matrix full of zeros

DP[2][4]
not_taken = DP[1][4] = 10
taken = DP[1][4- w[1]] + p[1] → 2 ≤ 4 → 0 + p[1] = 7
max(7, 10) = 10

Knapsack: the code

2 for loops:
one of size n
one of size C

Memoization

c- w[n-1]
= 9 - 4

(let’s try a top-down approach!)

Memoization

9- w[n-2]
= 9 - 3

5- w[n-2]
= 5 - 3

Memoization

Memoized-knapsack using a table (np array)

c
i 0 1 2 3 4 5 6 7 8 9
0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1 -1 -1 0 0 10 10 10 10 -1 10
2 -1 -1 7 -1 -1 10 17 -1 -1 17
3 -1 -1 -1 -1 -1 15 -1 -1 -1 25
4 -1 -1 -1 -1 -1 -1 -1 -1 -1 25

Note: remember that NOT all elements of the
table are actually needed to solve our
problem.

top-down

very easy: we are implementing the formula above, with a
top-down approach checking if we already computed
intermediate solutions

-1 if value not computed yet

Memoized-knapsack using a table (np array)
c

i 0 1 2 3 4 5 6 7 8 9
0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1 -1 -1 0 0 10 10 10 10 -1 10
2 -1 -1 7 -1 -1 10 17 -1 -1 17
3 -1 -1 -1 -1 -1 15 -1 -1 -1 25
4 -1 -1 -1 -1 -1 -1 -1 -1 -1 25

in the worst case is w[i] = 1

Memoized-knapsack using a dictionary

Dictionary:
{(1, 9): 10, (1, 7): 10, (2, 9): 17, (1, 6): 10, (1, 4): 10, (2, 6):
17, (3, 9): 25, (1, 5): 10, (1, 3): 0, (2, 5): 10, (1, 2): 0, (2, 2):
7, (3, 5): 15, (4, 9): 25}

c
i 0 1 2 3 4 5 6 7 8 9
0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1 -1 -1 0 0 10 10 10 10 -1 10
2 -1 -1 7 -1 -1 10 17 -1 -1 17
3 -1 -1 -1 -1 -1 15 -1 -1 -1 25
4 -1 -1 -1 -1 -1 -1 -1 -1 -1 25

Longest common subsequence

Longest common subsequence (LCS)

P: ACAATACT
T: ATCAGTC

Z: ACA

P: ACAATACT
T: ATCAGTC

Z: ACATC

Longest common subsequence (LCS)

P: ACAATAT
T: ATCAGTC
Out: 4

P: ATATATATAT
T: ATGATAAT
Out: 6

P: AAAAA
T: CTGCTC
Out: 0

P: ATATATATAT
T: ATGATAAT
Out: 6

Examples:

Any ideas? Naive idea (“brute force”): generate all subsequences of P, all subsequences of T, compute the
common ones and return the longest.

Problem: all subsequences of a sequence with length n are 2^n (think about strings of n 0 or 1 : 1 means
keep the character, 0 do not keep it...)
To check if a string is a substring of another one I need to read them both: O(m + n)

Computational complexity:

Longest common subsequence (LCS)

Longest common subsequence (LCS)

Longest common subsequence (LCS)

Case 1:

Ex.
P : TACGCA
T: ATCGA A is part of the LCS

Longest common subsequence (LCS)

Case 2:

Ex.
P : TACGC
T: ATCG

either C or G is useless (removing C seems
the most reasonable choice)

Longest common subsequence (LCS)

Base cases:

What if i = 0 or j = 0?

Ex.
P : TACGC
T:

length of LCS is 0

Putting it all together:

LCS: example

P: CTCTGT
T: ACGGCT

result in DP(n,m)

arrows specify
where the values
come from

Memoized LCS

DP: {(1, 1): 0, (1, 2): 0, (1, 3): 0, (1, 4): 0, (2, 3): 1, (2, 4): 1, (2, 1): 1, (2,
2): 1, (3, 1): 1, (3, 2): 1, (3, 3): 1, (3, 4): 1, (4, 5): 2, (4, 1): 1, (4, 2): 1, (4,
3): 1, (4, 4): 1, (5, 3): 2, (5, 4): 2, (5, 5): 2, (6, 6): 3}

Result:
3

Memoized LCS: where is my string?

travel back up to
build the
substring...

Longest common subsequence (LCS)

we “consume” one element of either
of the two sequences at each step

that is the size of the matrix

Automatic memoization in python

Exercise: palindrome

Exercise: palindrome

Exercise: palindrome

Exercise: palindrome

Shortest common supersequence

problems for which there is no polynomial time algorithms
known. IF there was, then all NP problems would be solved
polynomially

