Scientific Programming:
Algorithms (part B)

Programming paradigms

Luca Bianco - Academic Year 2020-21
luca.bianco@fmach.it
[credits: thanks to Prof. Alberto Montresor]

Problems and solutions

[Given a problem:

@ There are no "general recipes" to solve it

e Nevertheless, we can identify four phases:

e Problem classification

e Solution characterization

e Selection of the algorithmic technique
e Selection of the data structure

@ These phases are not strictly sequential

Classification of problems

- Decisional problems
@ Does the input satisfy a given property?

e Output: the answer is yes/no

! e Example: is the graph connected?

~ Search problems

@ Research space: a set of possible "solutions"

@ Admissible solution: a solution that does satisfy some
conditions

e Example: position of a substring in the string
\

Classification of problems

~ Optimization problems N
@ Fach solution is associated with a cost function

o We want to identify the solution with minimum cost

e Example: the shortest path between nodes in a graph

\

- Approximation problems ‘

@ Sometimes, obtaining the optimal solution is computationally
infeasible

e We may be satisfied by an approximate solution: low cost, but
we are not sure that the cost is the smallest possible

e Example: the traveling salesman problem

Mathematical characterization

It is important to mathematically define the relationship between
input and output

e Very often the mathematical characterization is trivial...
@ ... but it could provide a first idea of the solution

e Example: given a sequence of n elements, a sorted permutation is
given by the minimum followed by a sorted permutation of the
remaining n — 1 elements (Selection Sort)

The mathematical characterization can suggest a possible technique

e Optimal substructure — Dynamic programming

e Greedy choice — Greedy technique

Algorithmic techniques

- Divide-et-impera

@ The problem is subdivided in independent subproblems, that
are solved recursively (in a top-down approach)

@ Area of application: decision problems, search (ex. QuickSort)

-~ Dynamic programming

@ The solution is built in a bottom-up way from the solution of
smaller problems (potentially repeated)

@ Area of application: optimization problems

r Memoization

@ Top-down version of dynamic programming

.

Algorithmic techniques

-~ Greedy
@ Greedy approach: select the choice which appears "locally
optimal"

e Area of application: optimization problems
(.

~ Backtrack

@ Try something, and if does not work, try something else

@ Area of application: search problems, optimization problems

Local search

@ The optimal solution can be obtained by continuously
improving sub-optimal solutions

General approach

Optimization problem Counting problem 1. Define the solution
(better, the value of the

solution) in recursive

terms
Solution defined Solution value defined in a 2. Depending on if we can
in a recursive way recursive way build the solution from

repeated subproblems
we apply different

Repeated subproblems,

No repeated Repeated subproblems, iSubsat of thamito be solvad techniques
subproblems each of them to be solved 3 From DP and
l memoization (if we do

not need to solve all the
subproblems, but just a
subset) we get a
solution table that we

Obtimal uti Numeré need to analyze to get a
A o utlon_ Solution table numeric solution or to
solution reconstruction output))

build the optimal

solution

Divide&Impera Memoization

Dynamic programm.

Dominoes

Definition

The dominoes game consists of tiles with size 2 x 1. Let us consider
the arrangements of n tiles inside a rectangle 2 xn. Write an efficient
algorithm that computes the number of possible arrangements and
discuss its correctness. Compute an upper bound to its complexity.

Example

The cases below represent the five possible arrangements in a rec-
tangle 2 x 4.

Any ideas on how to solve this problem?

Dominoes

Recursive definition

Let’s define a recursive formula that computes the number of pos-
sible arrangements.

o If a vertical tile is placed, the problem of size n — 1 must be solved.

e If an horizontal tile is placed, then another horizontal tile must be
placed as well; the problem of size n — 2 must be solved.

n= 0, only one
1 n S 1 < possibility: no tiles.
D(TL) = n=1, only 1 possibility,
? n>1 N
vertical tile
2Xn 2Xn

Dominoes

Recursive definition

Let’s define a recursive formula that computes the number of pos-
sible arrangements.

e If a vertical tile is placed, the problem of size n — 1 must be solved.

e If an horizontal tile is placed, then another horizontal tile must be
placed as well; the problem of size n — 2 must be solved.

1 n <1
D(n) = -
(TL) {D(n — 2) + D(n — 1) n>1 4— We sum because the
two cases originate
2xn 2xXn different solutions

Dominoes

D B 1 n<l
(n) = Dn-2)+D(n-1) n>1

[The generated mathematical series is the following:

1; 1, 2, 8 5; 8y 13y 21, 34, 55; 89;

[Does it sound familiar?

Fibonacci’s numbers!

N =4 (i.e. 2x4) » 5 possible dispositions (n+1)th Fibonacci’s number

Dominoes: recursive algorithm ,,, _ {1 n<1
Dn-2)+D(n-1) n>1

[Write a recursive algorithm that solves the problem J

def dominoes(n):
if n <= 1:
return 1
else:
return dominoes(n-2) + dominoes(n-1)

for i in range(10):
print(dominoes(i), end = " ")

112 358 13 21 3455

def dominoes(n):
if n <= 1:

Complexity aa

return dominoes(n-2) + dominoes(n-1)

for i in range(10):
print(dominoes(i), end = " ")

1:1:2 3 58 13'2X 34.55

What is the complexity of dominoes?

~ Theorem \

Let a1, aa, ..., ap be non-negative integer constants; let ¢ and
1 < real constant such that ¢ > 0 and 8 > 0; let T'(n) be a recurrence
n =
T (n) - defined as follows: = -) 5
Tn—-1)4+T(n-—2 1 n>1 T(n) = | &isisn @D =1) e n>m
() + () + () (1) n<m<h

\ Given a = Z a;, then:

. 1<i<h
cost of if and sum © T(n) = O+, ifa =1,

Theorem not seen: | @ T(n)=6(a"n’) ifa>2

Linear recurrences with constant order:
e ai=1lm= 10 =20=0
o Complexity: ©(a" - n?)

T(n) = O(2")

def dominoes(n):
ifinoe= 1:

Recursive tree

return dominoes(n-2) + dominoes(n-1)

for i in range(10):
print(dominoes(i), end = " ")

1:1:2 3 58 13'2X 34.55

[(4 i R f. o
| <4 | - ¢

Several sub-problems are repeated!

How to avoid computing the same thing over and
over again: Dynamic programming

. DP Table

o We use a DP table (list, matrix, dictionary, etc.) to store results of
sub-problems already solved

@ The table contains an entry for each subproblem to be solved
e The table is indexed by a description of the input (e.g., size)

@ When the same subproblem has to be solved again, we use the
result stored in the table

How to avoid computing the same thing over and
over again: Dynamic programming

Base cases

@ The bases cases do not need to be computed, they can be stored
immediately

Bottom-up iteration

e We start from problems that can be solved using only base cases

@ We go up to larger and larger problems...

@ ... up to the final goal n (0]1]2]|3]|4 6|7
DPI] | 1 (= ? 5 13 | 21
 W—

An iterative solution o | n<1
(n) = Dn-2)+D(n—-1) n>1

r e

Write an iterative algorithm that solves the Dominoes problem

def dominoes2(n):
res = [0]*(n+1) base cases, stored immediately
resf] =1 . ———
res[l] =1
for i in range(2,n+1):
res[i] = res[i-1] + res[i-2]
return res[n] output

What is the computational complexity of domino2(n)?

T'(n) =0O(n)* How about the space complexity? *

What is the size of res? S(n) =06(n)

Ideas on how to improve this?

Another iterative solution o | n<1
(n) = Dn-2)+D(n—-1) n>1

def dominoes3(n):

dp0 = 1
dpl = 1
dp2 = 1
for i in range(2,n+1):
dp0 = dpl
dpl = dp2
dp2 = dp0 + dpl
return dp2
(What is the space complexity of domino3(n)? j
S(n) = 6(1)

pP(1 | 1 [[2] 3|5]8]|13]21

Uniform vs Logarithmic cost model | n<1
(n) = Dn-2)+D(n—-1) n>1

[Are you sure that our complexity formulas are correct? J
X
~ Binet’s Formula for Fibonacci’s number W
Difr— T} === " _(A=9)" ¢"—(=9)™" Careful there: the
V5 V5 NG Fibonacci’s
where number grows
1 _ exponentially!
¢ = +2\/§ = 1,6180339887... golden ratio
\),
{ - N
How many bits are needed to store F(n)? = 2
\ V5 2

Uniform vs Logarithmic cost model D(n) = {1
o (n

Are you sure that our complexity formulas are correct?

Binet’s Formula for Fibonacci’s number

_ O B (1 _ @)n _ G =~ (_@)—n
V5 V5 V5
1+ /5

¢ = 5 = 1,6180339887 ... golden ratio

D(n—1) = F(n)

where

How many bits are needed to store F'(n)? =

SI%

log F'(n) = ©(n) |::> the complexity seen

n<l
—2)+D(n—-1) n>1

Careful there: the
Fibonacci’s
number grows
exponentially!

This affects the
complexity of
summing two
consecutive
Fibonacci
numbers

before needs to be multiplied by n

Uniform vs Logarithmic cost model D(n) = {

1
D(n—-2)+ D(n—-1)

Under the logarithmic cost model, the three versions have the following

complexities:
Function | Time complexity | Space complexity
domino1 () O(n2") O(n?)
domino2 () O(n?) O(n?)
domino3() O(n?) O(n)

n< 1
> 1

Uniform vs Logarithmic cost model p(m = | n<l1
o Dn-2)+D(n—-1) n>1

Under the logarithmic cost model, the three versions have the following

complexities:
Function | Time complexity | Space complexity
dominol () O(n2") O(n?)
domino2 () O(n?) O(n?)
domino3() O(n?) O(n)

s = time.time()
for i in range(1,45):

print(dominoes(i), end = " ")
&= tine tine() 1 2358_...1134903170
print("Elapsed time: {}s".format(e-s)) Elapsed time: 659.3645467758179s
s = time.time()
for i in range(1,45):
print(dominoes2(i), end = *) 12358 ... 1134903170
e = time.time() Elapsed time: 0.0007071495056152344s
print("Elapsed time: {}s".format(e-s))
: = tilpe.tirrle!()1 i 12358...1134903170
O T latnnesa(a)., e = ™) Elapsed time: 0.0011742115020751953s

e = time.time()
print("Elapsed time: {}s".format(e-s))

Hateville

Hateville is a strange village, composed of n houses, numbered 1-n
and placed along a single road

In Hateville, everybody hates his next-door neighbors, on both
sides: thus a person living in house ¢ hates the neighbors living in
houses ¢ — 1 and ¢ + 1 (if they exist)

Hateville wants to organize a festival; your task is to collect money
to organize it.

Each inhabitant ¢ wants to donate a quantity D[i] of money, but he
will give nothing if any of his neighbors is donating.

RloeR o eR @ eRIE

Hateville 1IEOEIEIOEIEOE

Consider the following problems:
e Write an algorithm that returns the largest amount of money that

can be collected

e Write an algorithm that returns a subset of indexes S C {1,...,n}

such that the total amount 7" =)", ¢ DJi] is maximal. remember the

additional constraint
that indexes must not
be consecutive

Examples:
e Donation list: D = [4, 3, 6, 5] e Donation list: D = [10, 5, 5, 10]
@ Maximum amount: 10 e Maximum amount: 20
o Index set: {1,3} o Index set: {1,4}

summing all even or all odds does not
work!

o Donation list: D = [4, 3, 6, 5] @ Donation list: D = [10, 5, 5, 10]

HateVi ”e o Maximum amount: 10 o Maximum amount: 20
o Index set: {1,3} o Index set: {1,4}
(How would you solve the problem?]
[We re-define the problem]

o Let HV (i) be the set of numbers to be selected to obtain the
maximum amount of donations from the first ¢ houses, numbered
§ -)

e HV(n) is the solution to the original problem

e Donation list: D = [4, 3, 6, 5] @ Donation list: D = [10, 5, 5, 10]

HateVi ”e o Maximum amount: 10 o Maximum amount: 20
@ Index set: {]_’3} o Index set: {1,4}
[Let’s compute HV (i) based on HV(0)... HV (n — 1) values j

o What happens if I don’t accept its donation?

HV (i) =

e Donation list: D = [4, 3, 6, 5] @ Donation list: D = [10, 5, 5, 10]

HateVi ”e o Maximum amount: 10 o Maximum amount: 20
@ Index set: {]_’3} o Index set: {1,4}
[Let’s compute HV (i) based on HV(0)... HV (n — 1) values j

o What happens if I don’t accept its donation?

HV(i)=HV(i—1)

o Donation list: D = [4, 3, 6, 5] @ Donation list: D = [10, 5, 5, 10]

HateVi ”e e Maximum amount: 10 e Maximum amount: 20
o Index set: {1,3} o Index set: {1,4}
[Let’s compute HV (i) based on HV(0)... HV (n — 1) values j

o What happens if I don’t accept its donation?

HV (i) = HV(i—1)

e What happens if I accept its donation?

o Donation list: D = [4, 3, 6, 5] @ Donation list: D = [10, 5, 5, 10]

HateVi ”e e Maximum amount: 10 e Maximum amount: 20
o Index set: {1,3} o Index set: {1,4}
[Let’s compute HV (i) based on HV(0)... HV (n — 1) values]

o What happens if I don’t accept its donation?

HV (i) = HV(i—1)

e What happens if I accept its donation?

HV(i)=HV(i—2)+ Dfi]

o Donation list: D = [4, 3, 6, 5] @ Donation list: D = [10, 5, 5, 10]

H ateVi I I e e Maximum amount: 10 e Maximum amount: 20
o Index set: {1,3} o Index set: {1,4}
[Let’s compute HV (i) based on HV(0)... HV (n — 1) values]

o What happens if I don’t accept its donation?

HV (i) = HV(i—1)

e What happens if I accept its donation?

HV(i)=HV(i—2)+ Dfi]
@ How can I choose between the two cases?

max(HV (i — 1), HV (i — 2) + D[i])

Hateville: recursive algorithm? max(HV (i = 1), HV (i - 2) + D[i)

(Write a recursive algorithm that solves Hateville? J

Would it be a good idea?

DP Table max(HV (i — 1), HV (i — 2) + D[i])

~ Value of the optimal solution “

e Let DP(i) be the value of the maximum amount of donation
that we can obtain from the first ¢ houses of Hateville

e DP(n) is the value of the optimal solution

0 ifi=0
DP(i) = 5§ D[1] =1
max(DP(i — 1), DP(i —2)+ D[i]) ifn>2

0 ifi=0

lterative solution DP(i) =4 D[1] =i
max(DP(i — 1), DP(i — 2) + D[i]) ifn>?2

[Write an algorithm that solves the Hateville problem]

def hateville(D, n):
dp = [0]*(n+1)
if n > 0O:
dp[1] = D[]
for i in range(2, n+l):
dp[i] = max(dp[i-1],dp[i-2] + D[i-1])

return dp[n]

D= [10,5,5,8,4,7,12] D1 = [10,1,1,10,1,1,106]
print("Donations: {}".format(D)) print("Donations: {}".format(D1))
for i in range(len(D)+1): for i in range(len(D1)+1):)))
print("solution for {}: {}".format(D[0:i],hateville(D, i))) print("Solution for {}: {}".format(D1[0:i],hateville(D1, i)))
Donations: [10, 5, 5, 8, 4, 7, 12] Donations: [10, 1, 1, 10, 1, 1, 10]
Solution for []: © Solution for []: ©
Solution for [10]: 10 Solution for [10]: 10
Solution for [10, 5]: 10 Solution for [10, 1]: 1@
Solution for [10, 5, 5]: 15 Solution for [10, 1, 1]: 11
Solution for [10, 5, 5, 8]: 18 Solution for [10, 1, 1, 10]: 20
Solution for [10, 5, 5, 8, 4]: 19 Solution for [10, 1, 1, 10, 1]: 20
Solution for [10, 5, 5, 8, 4, 7]: 25 Solution for [16, 1, 1, 10, 1, 1]: 21
Solution for [10, 5, 5, 8, 4, 7, 12]: 31 Solution for [16, 1, 1, 10, 1, 1, 10]: 30

0 ifi=0
lterative solution DP(i) ={D[1] i1
max(DP(i — 1), DP(i — 2) + D[i]) ifn>?2

i (0|12 |34 |5]|6]|7 i (o123 |4a[5]|6]7
D 1100 5 154 8 |14) 7 |12 D 100 L[1'wop1]1]10
DP | 0107 10 r157 18 r1§T, 25 |31 DP | 010410 j 11 [120 Ezo 21 130

V Problem

e We have the value of the optimal solution, but we don’t have the
solution!

e Look in position DP[i]. From which cells this value has been
computed?

o If DP[i] = DP[i — 1], the housei has not been selected
o If DP[i] = DP[i — 2]+ D[i |, house 7 has been selected
Build solution (i) recursively as:
solution(i-2) AND add index i to a list
or

solution(i-1)

Building the solution

def hateville(D, n):
dp = [0]*(n+1)
if n > 0:
dp[1] = D[O]
for i in range(2, n+l):
dp[i] = max(dp[i-1],dp[i-2] + D[i-1])

return build solution(D,dp,n)

def build solution(D, dp, 1i):
if i == 0:
return []
elif i == 1:
return [0]
else:
if dp[i] == dp[i-1]:
sol = build solution(D, dp, i-1)
else:
sol = build solution(D, dp, i-2)
sol.append(i-1)
return sol

e Look in position DP[i]. From which cells this value has been
computed?

o If DPJi] = DP[i — 1], the housei has not been selected
o If DP[i{] = DP[i — 2]+ D[i], house 7 has been selected

D = [10,5,5,8,4,7,12]
print("Donations: {}".format(D))
for i in range(len(D)+1):
HV = hateville(D, 1)
print("Donors for {}: {}. Donations: {}".format(D[0®:1i],HV,sum([D[x] for x in HV])))
print("\n\n")

D1 = [10,1,1,10,1,1,10]
print("Donations: {}".format(D1))
for i in range(len(D1)+1):
HV = hateville(D1, i)
print("Donors for {}: {}. Donations: {}".format(D1[©:i],HV,sum([D1[x] for x in HV])))

Donations: [10, 5, 5, 8, 4, 7, 12]

Donors for []: []. Donations: ©

Donors for [10]: [©]. Donations: 10

Donors for [10, 5]: [@]. Donations: 10

Donors for [10, 5, 5]: [0, 2]. Donations: 15

Donors for [10, 5, 5, 8]: [©, 3]. Donations: 18

Donors for [10, 5, 5, 8, 4]: [0, 2, 4]. Donations: 19

Donors for [10, 5, 5, 8, 4, 7]: [0, 3, 5]. Donations: 25

Donors for [10, 5, 5, 8, 4, 7, 12]: [0, 2, 4, 6]. Donations: 31

Donations: [10, 1, 1, 10, 1, 1, 10]
Donors for []: []. Donations: ©

Donors for [10]: [©]. Donations: 10
Donors for [10, 1]: [©]. Donations: 10

Donors for [10, 1, 1]: [0, 2]. Donations: 11

Donors for [10, 1, 1, 10]: [®, 3]. Donations: 20

Donors for [10, 1, 1, 10, 1]: [0, 3]. Donations: 20

Donors for [16, 1, 1, 10, 1, 1]: [®, 3, 5]. Donations: 21
Donors for [10, 1, 1, 10, 1, 1, 10]: [©, 3, 6]. Donations: 30

Complexity

def hateville(D, n):
dp = [0]*(n+1)
if n > o: What is the complexity of build_solution?

dp[1] = D[e]
for i in range(2, n+l):
dp[i] = max(dp[i-1],dp[i-2] + D[i-1])

return build solution(D,dp,n)

def gglidzfoltjtlon(D, dp, i): What is the complexity of hateville?
return []
elif i == 1:
elseI:'eturn [e] 1“(71) — ()(71)
if dp[i] == dp[i-1]:
sol = build solution(D, dp, i-1)
else:
sol = build solution(D, dp, i-2) Exercise:
sol.append(i-1) N . .
return sol write hateville with S(n) = O(1)

(without reconstructing the solution)

Knapsack

~ Problem)

Given a set of items, each of them characterized by a weight and
a value, determine which items to include in a collection so that
the total weight of the collection is less than or equal to a given
"knapsack" capacity and the total value (or profit) is as large as

possible.
(. o

-~ Input ~

o List w, where wli] is the weight of the i-th item

e List p, where pli] is the value (or profit) of the i-th item

@ The capacity C of the knapsack

\, J

~ Output \
A collection S C {1,...,n}such that:

e Total volume should be smaller or equal than the capacity:
w(S) =Y egwli] < C

o Total profit is maximized: p(S) = >, ¢ p[i] is maximal
. v

Problem

Kn a pS a Ck Given a set of items, each of them characterized by a weight and

a value, determine which items to include in a collection so that
the total weight of the collection is less than or equal to a given
"knapsack" capacity and the total value (or profit) is as large as

possible.
(Which are the best items for this example?)

Itemid | 1 | 2] 3 =19
Weight | 10 | 4 | 8 B

Profit | 20 | 6 | 12 = s-0

A A greedy approach would not

Iterfl d| 1|23 C =12 work because in the second
Weight | 10 | 4 | 8 ‘ S ={2,3} case we would pick item 1

Profit | 20 | 7 | 15

L Design an algorithm to solve the Knapsack problem]

Knapsack

- Definition: Sub-problem DP(i,c) \

Given a knapsack with capacity C' and n items characterized by
weights w and profits p, we define DP(i,c¢) as the maximal profit

we can obtain from the first ¢ items in a knapsack of capacity c. <C
\ J c<

(Original problem J

The maximal profit of the original problem corresponds to DP(n,C).

Knapsack

[Let us consider the last item of problem DP(i,c)]
e What happens if you don’t take it? The capacity and profit do not
: . ec
DP(i,c) = DP(i—1,c) change

. i
o What happens if y01‘1 take it . g J Subtract the weight of the item
DP(i,c) = DP(i — 1,c — w[i]) + pl[i] from the capacity and add its

profit

(How to select the best solution between the two?)

DPfiye) =

Knapsack

[Let us consider the last item of problem DP(i,c)]
e What happens if you don’t take it? " v and brofit do not
" . € Ccapacity ana protit ao no

DP(i,c) = DP(i—1,c) change

. i
o What happens if y01‘1 take it . g J Subtract the weight of the item
DP(i,c) = DP(i — 1,c — w[i]) + pl[i] from the capacity and add its

profit

[How to select the best solution between the two?)

DP(i,c) = max(DP(i — 1,¢ — w[i]) + p[i], DP(i — 1,¢))

Knapsack

(What are the base cases for this recursive definition?)

e What happens if you don’t have any more items?
e What happens if you don’t have any more capacity?

e What happens if your capacity is negative?

0 i=0o0rc=0
DP(Z', c)=4{ —o0 c<0 SO to enforce NOT
; ; . s 2 choosing objects
max(DP(i — 1,c— w(i]) + pli], DP(i — 1,¢c)) otherwise that make capacity
negative

Knapsack: the code Dp(i,c):{‘im o<l

max(DP(i — 1,¢c — w(i]) + p[éi], DP(i — 1,¢)) otherwise

import numpy as np
import math

def knapsack(w, p, C):

n = len(w)
DP = np.zeros((n + 1, C + 1)) « inizialize a n+1 x C+1 matrix full of zeros
for i in range(1l, n+l): 4= bottom-up

for c in range(1l, C+1):
not_taken = DP[i-1][c]
if w[i-1] > c:

taken = -math.inf c
else: |0]1[2[3[4[5]6 7]8]9
taken = DP[i-1][c - w[i-1]] + p[i-1] 80 I B e B B
(Dl;l;[i][c}=maX(not_taken, taken) 1{ojofofofw]|1w]10|10]10]10
#print
H B e resutsnae 2o
40078101517]18[18]25
w = [4,2,3,4]
p=[10,7,8,6]
C=9
print (knapsack(w,p,C)) DP[1][1]
_ not_taken = DP[O][1]=0
25.9 taken = DP[O][1- w[O]] + p[0] » 4> 1 - «

max(0, -») =0

max(DP(i — 1,c— wl[i]) + p[i], DP(i — 1,¢)) otherwise

Knapsack: the code Dp(i,c):{‘im o<l

import numpy as np
import math

def knapsack(w, p, C):

n = len(w)
DP = np.zeros((n + 1, C + 1)) « inizialize a n+1 x C+1 matrix full of zeros
for i in range(1l, n+l): 4= bottom-up

for c in range(1l, C+1):
not_taken = DP[i-1][c]
if w[i-1] > c:

taken = -math.inf c
else: 0[1]2[3][4[5[6 7809
taken = DP[i-1][c - w[i-1]] + p[i-1] 80 oot T o oot o
(Dlzlj[i][c}=maX(not_taken, taken) 1{ofjoflofo]w/10]l10]10]10]10
#print
£ — JELE e
4(0[0f7 (81015 |17 |18 | 18| 25
w = [4,2,3,4]
p=[10,7,8,6]
C=09
print (knapsack(w,p,C)) DP[1]4]
_ not_taken = DP[O][4]=0
25.0 taken = DP[O][4- w[O]] + p[0] » 4 <4 » O + p[0] = 10

max(0, 10) =10
D

Knapsack: the code Dp(i,c):{‘im o<l

max(DP(i — 1,c— wl[i]) + p[i], DP(i — 1,¢)) otherwise

import numpy as np
import math

def knapsack(w, p, C):

n = len(w)
DP = np.zeros((n + 1, C + 1)) « inizialize a n+1 x C+1 matrix full of zeros
for i in range(1l, n+l): 4= bottom-up

for c in range(1l, C+1):
not_taken = DP[i-1][c]
if w[i-1] > c:

taken = -math.inf c
else: (0[1[2[3[4[5[6 7809
taken = DP[i-1][c - w[i-1]] + p[i-1] 80 e e B e R,
(Dlzl)’[i][c]=max(not_taken, taken) 1/0(0[0]0]10]10|10]| 10| 10| 10
#print 1
B . st e oo [e
4| 0Y0[7]8]10|15|17| 181825
W = [4121314]
p = [10,7,8,6]
C=09 -
print (knapsack(w,p,C)) DP[2]2]
_ not_taken = DP[1][2]=0
25.8 taken = DP[1]2- W[1]] + p[1] » 2 <2 >0 + p[1] = 7
max(0, 10) =7

max(DP(i — 1,c— wl[i]) + p[i], DP(i — 1,¢)) otherwise

Knapsack: the code Dp(i,c):{‘im o<l

import numpy as np
import math

def knapsack(w, p, C):

n = len(w)
DP = np.zeros((n + 1, C + 1)) « inizialize a n+1 x C+1 matrix full of zeros
for i in range(1l, n+l): 4= bottom-up

for c in range(1l, C+1):
not_taken = DP[i-1][c]
if w[i-1] > c:

taken = -math.inf c
else: |o[1][2[3[4a[5]6 |7]8]9
taken = DP[i-1][c - w[i-1]] + p[i-1] 80 e e B e R,
P .t(DI;F)’[i][c}=maX(not_taken, taken) 1{0/0]0]0[10)10]|10]10]10]10
Drin
B enizhre oot
4{0|0F7[8[10]15 |17 |18 18] 25
w= [4,2,3,4]
p=[10,7,8,6]
C=09 .
print (knapsack(w,p,C)) DP[2](4]
_ not_taken = DP[1][4] =10
25.8 taken = DP[1[4- W[1]] + p[1] »2< 4 » 0 + p[1] = 7

max(7, 10) =10
D

import numpy as np
import math

Knapsack: the code

def knapsack(w, p, C):
n = len(w)
DP = np.zeros((n + 1, C + 1))
for i in range(1l, n+l):
" y ™~ for ¢ in range(1l, C+1):
[What is the computational complexity of function knapsack()? J r_\gt_'féktler]l = DP[i-1][c]
if wli- S
taken = -math.inf
else:
taken = DP[i-1][c - w[i-1]] + p[i-1]

2 for loops:
T(n) =0nC .
(m) (nC) one of size n DP[i][c] = max(not taken, taken)
one of size C #print(DP)
return DP[n][C]

[(&

. Is it a polynomial algorithm? i - A5 T6 1717819
\ J

10 | 10 | 10 | 10 | 10 | 10
10 | 10 | 17 | 17 | 17 | 17
10 | 15 | 17 | 18 | 18 | 25
10 | 15 | 17 | 18 | 18 | 25

No, this is an example of pseudo-polynomial algorithm, because C' is
not the size of the input, is the input. Thus we need k = log C bits to
represent it, and thus complexity is equal to:

(=] K] Kan] Ken) Ran]]
[o.e] Ro o b | Rewl aw) B JL)

I I f e el I V)

(=] Benl Han) Ran) Ban] 0

BW N =IO =

T(n) = O(n2¥)

Memoization

-
k Note (let’s try a top-down approach!)

Not all elements of the table are actually needed to solve our problem.

import numpy as np
import math

def knapsack(w, p, C):
n = len(w)
DP = np.zeros((n + 1, C + 1))
for i in range(1l, n+l):
for ¢ in range(1l, C+1):
not taken = DP[i-1][c]
if wl[i-1] > c:
taken = -math.inf
else:
taken = DP[i-1][c - w[i-1]] + p[i-1]

DP[i][c] = max(not taken, taken)
#print (DP)
return DP[n][C]

(10,7,8,6]
9

rint(knapsack(w,p,C))

.

110123 4 6 71819

0O(0|O0O|O0O]O] O 0 0 0 0

1{0(0(0]0] 10 10 (10 | 10 | 10

2(0(0|7([7|10 17 | 17 | 17| A%

3100|7810 17 | 18 [18 | 25

4100|7810 17 | 18 | 18 | 25
c- win-1]

Memoization

-
k Note

N

Not all elements of the table are actually needed to solve our problem.

import numpy as np
import math

def knapsack(w, p, C):
n = len(w)
DP = np.zeros((n + 1, C + 1))
for i in range(1l, n+l):
for ¢ in range(1l, C+1):

if wl[i-1] > c:

not_taken = DP[i-1][c] --__§§§___§§-§§§§§~>

taken = -math.inf
else:
taken = DP[i-1][c - w[i-1]] + p[i-1]

DP[i][c] = max(not taken, taken)
#print(DP)
return DP[n][C]

=

5-3

=9-3

w=[4,2,3,4]
p=[10,7,8,6]
¢ =9
print(knapsack(w,p,C))
c

1 |01 (2(3] 4 5 6 T 8 9
09 IR a9 0 0 0 0 0
1({0/0(0]0|10(10 10|10 | 10|10
2 oo 77 [10 a0 17§17 [17 [17
3010|7810 §15 17| 18 | 18 | 25
4(0(0| 7|8 (10|15 |17 | 18 |18 | 25

5- W[n-2] 9- w[n-2]

Memoization

- Memoization

Programming techniques that merge the tabular aspect of dynamic
programming with the top-down approach of divide-et-impera

@ Whenever we need to solve a sub-problem, we check in the
table first, to see if the problem has already been solved in the
past

e If not, we compute the result and store it in the table
@ We use the result stored in the table

@ In any case, each subproblem is compute only once as in the
bottom-up version

Memoized-knapsack using a table (np array)

0 t=0o0orc=0
DP(i,c) = —o0 c<O0

import numpy as np max(DP(i — 1,c— w[i]) + p[i], DP(i — 1,c¢)) otherwise

import math W= [4,2,3,4]
def knapsack mem(w, p, C): g . 510:7;3.5]
=1 =
Bp - ‘fgf,‘f’(),nes((n+1, C+1)) <a -1ifvalue not computed yet print(knapsack mem(w,p,C))

return knapsackRec(w, p, DP, n, () « top-down

def knapsackRec(w, p, DP, i, c):

ific <@ c
return -math.inf i 0 1 2 3 4 5 6 7 8 9
1T 1 == O OF C = 0 | 4 | A4 | A4 | a4 a4 [A4 a4 a4
ﬁgféii[g] = 1 -1 -1 0 0 10 10 10 10 -1 10
if DP[i][c] < 0: == 2 -1 -1 7 -1 -1 10 | 17 | - -1 17
#the solution has not been computed already! 3 -1 -1 -1 -1 -1 15 -1 -1 -1 25
not taken = knapsackRec(w,p,DP,i-1,c) 4 -1 -1 -1 1 -1 -1 -1 A A 25

taken = knapsackRec(w,p,DP,i-1,c-w[i-1]) + p[i-1]
DP[i][c] = max(not taken, taken)
return DP[i][c]

Note: remember that NOT all elements of the
table are actually needed to solve our

very easy: we are implementing the formula above, with a problem.

top-down approach checking if we already computed
intermediate solutions

Memoized-knapsack using a table (np array)

10

10

10

10

17

17

sl wl N 2o -
LA A A Ao
L)L AL L -
NN EN] N-1 N N
LA Ao Al w
-
o

15

[T T Y T
Al al oAl al al ©

25

25

@ Table initialization

o The initialization cost is equal to O(nC')

o Applied in this way, there is no advantage in using the memoization

technique

o The real advantage is that it makes easy to translate the recursive

formula into an algorithm

e Using a dictionary

o Instead of using a table, we may use a dictionary
e No pre-initialization is necessary
o The execution cost is equal to O(min(2",nC))

\

T(n)=

in the worst case is w[i] =1

{

1

n<l

2T(n—-1)+1 n>1

Memoized-knapsack using a dictionary

import math w = [4,2,3,4]
p = [1057:8:6]
def knapsack mem(w, p, C): C=9
n = len(w) rint(knapsack mem(w,p,C
DP = dict) p (knap _mem(w,p,C))

return knapsackRec(w, p, DP, n, ()

def knapsackRec(w, p, DP, i, c):
ifici< O:
return -math.inf
if i == 0 or c == 0:
#DP[(i,c)] = 0

return 0 _ c
if (i,c) not in DP: <= i 0 1 2 3 4 5 6 7 8 9
#the solution has not been computed already! 0 1 -1 -1 -1 1 1 -1 -1 -1 -1
not taken = knapsackRec(w,p,DP,i-1,c) 1 1 -1 0 0 10 10 10 10 -1 10
taken = knapsackRec(w,p,DP,i-1,c-w[i-1]) + p[i-1] 2 1 1 7 ® ® 10 17 1 1 17
DP[(i,c)] = max(not taken, taken) . N
return DP[(i,c)] 3 1 1 1 1 1 15 1 1 1 25
4 1 -1 -1 -1 1 1 -1 -1 -1 25
Dictionary:

{(1,9): 10, (1, 7): 10, (2, 9): 17, (1, 6): 10, (1, 4): 10, (2, 6):
17, (3, 9): 25, (1, 5): 10, (1, 3): 0, (2, 5): 10, (1, 2): 0, (2, 2):
7, (3, 5): 15, (4, 9): 25}

Longest common subsequence

-~ Definition: subsequence

e A sequence P is a subsequence of 1" if P is obtained from T°
by removing one or more of its elements

e Alternatively: P is defined as the subset of indexes in
{0,...,n — 1} describing the elements of 7" that are also in P

@ The remaining elements are listed in the same order, although
they do not need to be contiguous

Examples ~— Note \
@ T — "AAAATTGA" The empty sequence is a
subsequence of every se-
—n n
o P = "AAATA) "

Longest common subsequence (LCS)

~ Definition: common subsequence

e Given two sequence P and 7', a sequence Z is a common
subsequence of P and T if Z is subsequence of both P and T’

o We write Z € CS(P, T)

Definition: longest common subsequence

e Given two sequence P and T, a sequence Z is a longest
common subsequence of P and T if Z € CS(P,T) and there is
no other sequence W such that W is longer than Z (|W|>|Z])
and W is common subsequence of P and T (W € CS(P,T)).

o We write Z € LCS(P,T)

=0

=0

ACAATACT
ATCAGTC

ACA

ACAATACT
ATCAGTC

ACATC

Longest common subsequence (LCS)

Problem: LCS

Given two sequences P and T of length n and m, respectively, find
either the length of the longest common subsequence or one of the
longest common subsequences.

Examples:

p- ACAATAT P: ATATATATAT P: AAAAA

T ATCAGTC T ATGATAAT T CTGCTC

out: 4 Out: 6 Out: O
P: ATATATATAT
T ATGATAAT
Out: 6

Any ideas? Naive idea (“brute force”): generate all subsequences of P, all subsequences of T, compute the

common ones and return the longest.

Problem: all subsequences of a sequence with length n are 2*n (think about strings of n O or 1: 1 means
keep the character, O do not keep it...)
To check if a string is a substring of another one | need to read them both: O(m + n)

Computational complexity: 7'(n) = (2" (m + n))

Longest common subsequence (LCS)

- Prefix

Given a sequence P composed of the characters pyps. . .p,, P(i) will
denote the prefix of P given by the first ¢ characters, i.e.:

P(i) = pip2- . .pi

(Examples

@ PP = ABDCCAABD
o P(0) =0 (empty subsequence)
o P(3) = ABD

o P(6) = ABDCCA

Longest common subsequence (LCS)

| Goal)

Given two sequences P and T of length n and m, write a recursive
formula DP(i, j) that returns the length of the LCS of the prefixes P(i)
and T°(7).

2
DPE.J) = { Base case

7 Recursive case

[Goal j

LO n g est CO m m O n S u bseq u e n Ce (LCS) Given two sequences P and T of length n and m, write a recursive

formula DP(i, j) that returns the length of the LCS of the prefixes P(i)
and 7T°(j).

PP {] P
Case 1:
Consider the two prefixes P(i) and T'(j) such that their last characters are the same: p; = 1;.

How would you compute D F[i, j]?

DFJ[i,jl=DF[i—1,j—1]+1

Ex.

P: TACGCA _
T ATCGA » A is part of the LCS

\‘{ Goal \

LO n g est CO m m O n S u bseq u e n Ce (LCS) Civen two sequences P and T of length n and m, write a recursive

formula DP(i, j) that returns the length of the LCS of the prefixes P(i)
and 7T°(j).

i 7 Base case
DP(i,j) = {,

? Recursive case

Case 2:

Consider the two prefixes P(i) and T'(j) such that their last characters are different: p; # 7;.
How would you compute D F[i, j]?

Hint: either p; or 7; are useless for the LCS.

DFi, j] = max(DFJi — 1, j], DFJi, j — 1])

Ex.
P: TACGC

either C or G is useless (removing C seems
T. ATCG

the most reasonable choice)

ﬂ Goal 7)

LO n g est CO m m O n S u bseq u e n Ce (LCS) Given two sequences P and T of length n and m, write a recursive

formula DP(i, j) that returns the length of the LCS of the prefixes P(i)

and 7T°(j).
TR
Base cases:
What ifi=0 orj=07?
DFli,j]=0
Ex.
;’ : TACGC . length of LCS is O
Putting it all together:
0 t=00orji=0
DP(i,j)={ DP(i—1,j—1)+1 i>0andj>0and p; =t;

max{DP(i —1,5),DP(i,j— 1)} ¢>0and j>0 and p; #1;

LCS: example

0 i=0orj=0
DP(i,j) =4 DP(i—-1,j-1)+1 i>0and j>0and p; =t; ilol1|2]34|5]6
max{DP(i —1,7),DP(i,j—1)} i>0and j>0 and p; #1t;
i L X & |T |46 |°T
P: CTCTGT 0 0 00 0 0 0 0
T ACGGCT
1 [A[O0O[LOLO]L0]]O[LO[LO
l arrows specify 3G |0 [J1]l1]]1[]]|%2(|>2
—t where the values
come from 4 (G| O [JT[JL|l1]{1 [w2(]2
5|1 C |0 m1[ll[™2]-22]]2]])2
6 | T[o|11]s2]12]{x3][=3]x3

%

result in DP(n,m)

Memoized LCS

0 t=0o0rj=0
DP(i,j) = DP(i —1,j — 1) + 1 i>0and j>0andp; =t
max{DP(t —1,5),DP(i,j— 1)} i>0and j>0and p; #t;

def LCSrec(P,T,DP, i,j):
ifi=0o0r j==

return 0 ilof1]2]3 5
if (i,j) not in DP: i ¢ T € | T @ |4
if P[i-1] == T[j-1]:
DP[(i,j)] = LCSrec(P,T, DP, i-1, j-1) + 1 0 ol B R R R
else: 1L |A O logloglogloloflo
DP[(i,j)] = max(LCSrec(P,T, DP, i-1,j),]
LCSrec(P,T, DP, i,j-1) 2 |C |0 [slp—1 \ll—ﬂ —1|—1
) 2 (—
return DP[(i,]j)] 31G|0]ll 11|11|11 2 |—2
4 |g ol 11|l1|11 ~2(12
def LCS(P,T): -y
n = len(P) 5|1C |0 |w1 11|~.2| 2112112
m = len(T) 6 | T |0 |l1]|~2]]2]|%3]=3[x3
D = dict()
LCSrec(P,T,D,n,m)
print(D)
return D[(n,m)] DP: {(1,1):0,(1,2):0,(1,3):0,(1,4):0,(2,3):1,(2,4): 1, (2, 1): 1, (2,
2):1,(3,1):1,(3,2):1,(3,3):1,(3,4): 1, (4,5): 2, (4, 1): 1, (4, 2): 1, (4,
3):1,(4,4):1,(5,3):2,(5,4): 2, (5, 5): 2, (6, 6): 3}
T = "CTCTGT"
P = "ACGGCT"
Result:
print(LCS(P,T)) 3

Memoized LCS: where is my string? R e T

def subsequence(DP,P,T,i,j): 1

ifi==0o0orj==
return []

if P[i-1] == T[j-1]:
S = subsequence(DP,P, T, i-1, j-1)
S.append(P[i-1]) #or T[j-1]
return S

else:

o ltoflofsofLofio]lo0

0 Islfj—=1l|s1|—=1|—=1]|—>1

P |pn]Lt w2 =2

o [pafurfur]ur]s2aly2

if DP[(i-1,j)] > DP[(i,j-1)]: 0 |11 fs2f-2]12]]2

return subsequence(DP,P,T, i-1, j)
else:
return subsequence(DP,P,T,i, j-1)

| v| B w| P
=l A aQ Q O »
o

def LCSrec(P,T,DP, i,j):
ifi=0o0or j == 0:
return 0
if (i,j) not in DP: travel back up to
o Pl[)ll>iﬂ ;;]TEJL(IZ;;'ec(P T, DP, i-1, j-1) +1 i cETCTar build the
else: S B ACRRET substring...
DP[(i,j)] = max(LCSrec(P,T, DP, i-1,j), . -
LCSrec(P,T, DP, i,j-1) print("LCS: {}".format("".join(LCS(P,T))))
)
return DP[(i,j)] LES: CCT

def LCS(P,T):
= len(P)
m = len(T)
= dict()
for i in range(n+1):
D[(0,i)] =0
for j in range(m+1):
D[(j,0)] = @

LCSrec(P,T,D,n,m)
return subsequence(D,P,T,n,m)

Longest common subsequence (LCS)

[What is the computational complexity of subsequence()?

)

T(n) = O(m+n)

we “consume” one element of either
of the two sequences at each step

(What is the computational complexity of LCS()?

)

T(n) = O(mn)

that is the size of the matrix

Automatic memoization in python

import time ##Automatic memoization in python

from functools import wraps

def fib(n):
if n<2: def memo(func):
return 1 cache = {} # Stored subproblem solutions
return fib(n-1) + fib(n-2) @wraps(func) # Make wrap look like func
def wrap(*args): # The memoized wrapper
s=time.time() if args not in cache: # Not already computed?
print(fib(45)) cache[args] = func(*args) # Compute & cache the solution

return cache[args] # Return the cached solution

e=time.time
0 return wrap # Return the wrapper

print("elapsed time: {:.3}s".format(e-s))

1836311903 @memo
elapsed time: 3.04e+02s def fib(n):
if n<2:

return 1
return fib(n-1) + fib(n-2)

s=time.time()
print(fib(45))
e=time.time()
print("elapsed time: {:.3}s".format(e-s))

18363119603
elapsed time: 0.000436s

Exercise: palindrome

A string is said palindrome if it reads indetically if read from left to
right and from right to left.

Write an algorithm that returns the minimum number of characters to
be inserted in a string to make it palindrome.

For example, input: “casacca’™

e n = 7 caratteri: “casaccaACCASAC”
e n = 6 caratteri: “casaccaCCASAC”
e n = 3 caratteri: “casaccaSAC”

e n = 2 caratteri: “ACcasacca”

Please note that characters may be inserted in the middle of the string
as well; for example, “anta” — “antNa”.

Exercise:

palindrome

o If the string s = as’a has the same initial and final character “a”
then:

f(s) = £(s")

o If the string s = as’b has two different initial and final characters:

e add a b character at the beginning or a a character at the end

e count this added character as an insertion

e consider the two subproblems given by the first and last (equal)
characters removed

e choose the minim

f(s) = min{f(as’), f(s'b)} + 1

Exercise: palindrome

0 127
DP(i,j) ={ DP(i+1,j — 1) i <jAsli]=s[j]
min(DP(i+1,§),DP(i,j — 1)+ 1 i< jAsli] # s|j]

Exercise: palindrome

def palindrome(in_str):

. ” DP = dict()
0 12> out = palindrome rec(DP, in str)
. o A % #print (DP)
DP(i,j)= S DP(i+1,5—1) i < jAsli]=s[j] e
min(DP(i +]-aj)a DP(i7j - 1) +1 i<y /\S[i] 7é 3[.7] def palindrome rec(DP, in str):

if len(in_str) < 2:
DP[in_str] = 0
return 0
else:
if in_str[0].upper() == in_str[-1].upper():
if in_str[1:-1] in DP:
return DP[in_str[1:-1]]
else:
DP[in_str] = palindrome_rec(DP, in str[1:-1])
else:
begin add = palindrome rec(DP, in str[-1] + in str)

end_add = palindrome_rec(DP, in str + in_str[@].upper())
if begin add >= end add:
DP[in_str] = end add + 1
else:
DP[in str] = begin add + 1
#DP[in str] = min(begin add, end add) + 1
return DP[in_str]

input = "casacca"
print(palindrome(input))

input = "anta"
print(palindrome(input))
2

1

Shortest common superseqguence

e A is a supersequence of B if B is a subsequence of A

@ The shortest common supersequence (SCS) of P, T is the shortest
sequence that is supersequence of both P, T

@ SCS problems appear in the sequencing projects, when the genome
of the individual is broken into several pieces. These pieces are
sequenced individually, and then the whole genome is constructed
as the shortest common supersequence of the sequences

e For the more general problem of finding a string S which is a

supersequence of a set of strings 57,599, ...,Sk, the problem is
NP-Complete

\ problems for which there is no polynomial time algorithms
known. IF there was, then all NP problems would be solved
polynomially

