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Problems and solutions



Classification of problems



Classification of problems



Mathematical characterization



Algorithmic techniques

(ex. QuickSort)



Algorithmic techniques



General approach

1. Define the solution 
(better, the value of the 
solution) in recursive 
terms

2. Depending on if we can 
build the solution from 
repeated subproblems 
we apply different 
techniques

3. From DP and 
memoization (if we do 
not need to solve all the 
subproblems, but just a 
subset) we get a 
solution table that we 
need to analyze to get a 
numeric solution or to 
build the optimal 
solution



Dominoes

Any ideas on how to solve this problem?



Dominoes

n= 0, only one 
possibility: no tiles.
n=1, only 1 possibility, 

vertical tile 
2xn 2xn

n -1 n -2 



Dominoes

We sum because the 
two cases originate 
different solutions2xn 2xn

n -1 n -2 



Dominoes

N = 4 (i.e. 2x4) → 5 possible dispositions (n+1)th Fibonacci’s number



Dominoes: recursive algorithm



Complexity

What is the complexity of dominoes?

Theorem not seen:

*

cost of if and sum



Recursive tree



How to avoid computing the same thing over and 
over again: Dynamic programming



How to avoid computing the same thing over and 
over again: Dynamic programming



An iterative solution

How about the space complexity?
What is the size of res?

Ideas on how to improve this?

base cases, stored immediately

output

*



Another iterative solution

*



Uniform vs Logarithmic cost model

where

Careful there: the 
Fibonacci’s 
number grows 
exponentially!

golden ratio

*



Uniform vs Logarithmic cost model

where

the complexity seen before needs to be multiplied by n

Careful there: the 
Fibonacci’s 
number grows 
exponentially!

This affects the 
complexity of 
summing two 
consecutive 
Fibonacci 
numbers

golden ratio



Uniform vs Logarithmic cost model



Uniform vs Logarithmic cost model

1 2 3 5 8 ... 1134903170 
Elapsed time: 659.3645467758179s

1 2 3 5 8 … 1134903170 
Elapsed time: 0.0007071495056152344s

1 2 3 5 8 … 1134903170 
Elapsed time: 0.0011742115020751953s



Hateville



Hateville

Examples:

remember  the 
additional constraint 
that indexes must not 
be consecutive

summing all even or all odds does not 
work!



Hateville



Hateville



Hateville



Hateville



Hateville

+ D[i]



Hateville

+ D[i]



Hateville: recursive algorithm?



DP Table



Iterative solution



Iterative solution

Build solution(i) recursively as:

solution(i-2)  AND add index i to a list
or

solution(i−1)



Building the solution



Complexity

What is the complexity of build_solution?

What is the complexity of hateville?

Exercise: 
write hateville with S(n) = O(1)
(without reconstructing the solution)



Knapsack

}



Knapsack

S = {1}

S = {2,3}

A greedy approach would not 
work because in the second 
case we would pick item 1



Knapsack

i ≤ n
c ≤ C



Knapsack

The capacity and profit do not 
change

Subtract the weight of the item 
from the capacity and add its 
profit



Knapsack

The capacity and profit do not 
change

Subtract the weight of the item 
from the capacity and add its 
profit



Knapsack

to enforce NOT 
choosing objects 
that make capacity 
negative



Knapsack: the code

bottom-up

result is here!

inizialize a n+1 x C+1 matrix full of zeros

DP[1][1]
not_taken = DP[0][1] = 0
taken = DP[0][1- w[0]] + p[0]  → 4 > 1 → - ∞
max(0, -∞) = 0



Knapsack: the code

bottom-up

result is here!

inizialize a n+1 x C+1 matrix full of zeros

DP[1][4]
not_taken = DP[0][4] = 0
taken = DP[0][4- w[0]] + p[0] → 4 ≤ 4 → 0 + p[0] = 10 
max(0, 10) = 10



Knapsack: the code

bottom-up

result is here!

inizialize a n+1 x C+1 matrix full of zeros

DP[2][2]
not_taken = DP[1][2] = 0
taken = DP[1][2- w[1]] + p[1] → 2 ≤ 2 → 0 + p[1] = 7 
max(0, 10) = 7



Knapsack: the code

bottom-up

result is here!

inizialize a n+1 x C+1 matrix full of zeros

DP[2][4]
not_taken = DP[1][4] = 10
taken = DP[1][4- w[1]] + p[1] → 2 ≤ 4 → 0 + p[1] = 7 
max(7, 10) = 10



Knapsack: the code

2 for loops: 
one of size n
one of size C



Memoization

c- w[n-1] 
= 9 - 4

(let’s try a top-down approach!)



Memoization

9- w[n-2] 
= 9 - 3

5- w[n-2] 
= 5 - 3



Memoization



Memoized-knapsack using a table (np array)

c
i 0 1 2 3 4 5 6 7 8 9
0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1 -1 -1 0 0 10 10 10 10 -1 10
2 -1 -1 7 -1 -1 10 17 -1 -1 17
3 -1 -1 -1 -1 -1 15 -1 -1 -1 25
4 -1 -1 -1 -1 -1 -1 -1 -1 -1 25

Note: remember that NOT all elements of the 
table are actually needed to solve our 
problem.

top-down

very easy: we are implementing the formula above, with a 
top-down approach checking if we already computed 
intermediate solutions

-1 if value not computed yet



Memoized-knapsack using a table (np array)
c

i 0 1 2 3 4 5 6 7 8 9
0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1 -1 -1 0 0 10 10 10 10 -1 10
2 -1 -1 7 -1 -1 10 17 -1 -1 17
3 -1 -1 -1 -1 -1 15 -1 -1 -1 25
4 -1 -1 -1 -1 -1 -1 -1 -1 -1 25

in the worst case is w[i] = 1



Memoized-knapsack using a dictionary

Dictionary: 
{(1, 9): 10, (1, 7): 10, (2, 9): 17, (1, 6): 10, (1, 4): 10, (2, 6): 
17, (3, 9): 25, (1, 5): 10, (1, 3): 0, (2, 5): 10, (1, 2): 0, (2, 2): 
7, (3, 5): 15, (4, 9): 25}

c
i 0 1 2 3 4 5 6 7 8 9
0 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1
1 -1 -1 0 0 10 10 10 10 -1 10
2 -1 -1 7 -1 -1 10 17 -1 -1 17
3 -1 -1 -1 -1 -1 15 -1 -1 -1 25
4 -1 -1 -1 -1 -1 -1 -1 -1 -1 25



Longest common subsequence



Longest common subsequence (LCS)

P: ACAATACT
T: ATCAGTC

Z: ACA

P: ACAATACT
T: ATCAGTC

Z: ACATC



Longest common subsequence (LCS)

P: ACAATAT
T: ATCAGTC
Out: 4

P: ATATATATAT
T: ATGATAAT
Out: 6

P: AAAAA
T: CTGCTC
Out: 0

P: ATATATATAT
T: ATGATAAT
Out: 6

Examples:

Any ideas? Naive idea (“brute force”): generate all subsequences of P, all subsequences of T, compute the 
common ones and return the longest. 

Problem: all subsequences of a sequence with length n are 2^n (think about strings of n 0 or 1 : 1 means 
keep the character, 0 do not keep it...)
To check if a string is a substring of another one I need to read them both: O(m + n)

Computational complexity:  



Longest common subsequence (LCS)



Longest common subsequence (LCS)



Longest common subsequence (LCS)

Case 1:

Ex. 
P : TACGCA
T:  ATCGA A is part of the LCS



Longest common subsequence (LCS)

Case 2:

Ex. 
P : TACGC
T:  ATCG

either C or G is useless (removing C seems 
the most reasonable choice)



Longest common subsequence (LCS)

Base cases:

What if i = 0  or j = 0?

Ex. 
P : TACGC
T:  

length of LCS is  0

Putting it all together:



LCS: example

P: CTCTGT
T: ACGGCT

result in DP(n,m)

arrows specify 
where the values 
come from



Memoized LCS

DP: {(1, 1): 0, (1, 2): 0, (1, 3): 0, (1, 4): 0, (2, 3): 1, (2, 4): 1, (2, 1): 1, (2, 
2): 1, (3, 1): 1, (3, 2): 1, (3, 3): 1, (3, 4): 1, (4, 5): 2, (4, 1): 1, (4, 2): 1, (4, 
3): 1, (4, 4): 1, (5, 3): 2, (5, 4): 2, (5, 5): 2, (6, 6): 3}

Result:
3



Memoized LCS: where is my string?

travel back up to 
build the 
substring...



Longest common subsequence (LCS)

we “consume” one element of either 
of the two sequences at each step

that is the size of the matrix 



Automatic memoization in python



Exercise: palindrome



Exercise: palindrome



Exercise: palindrome



Exercise: palindrome



Shortest common supersequence

problems for which there is no polynomial time algorithms 
known. IF there was, then all NP problems would be solved 
polynomially


